大数据相关基础知识-Hive

参考文档

1.http://blog.csdn.net/zhongqi2513/article/details/69388239
2.https://www.zhihu.com/question/21677041

英文原意及发音

英[haɪv]

n. 蜂巢; 蜂箱; 蜂群; 喧闹地区;
vt. 使(蜂)入蜂箱; 贮(蜜)于蜂箱中; 储备,积累;
vi. (蜂) 进入蜂箱; 聚居;
[例句]In the morning the house was a hive of activity
早上,房子里一片繁忙景象。
[其他] 第三人称单数:hives 复数:hives 现在分词:hiving 过去式:hived 过去分词:hived

基础介绍

  • Hive是建立在Hadoop之上的数据仓库,由Facebook开发,在某种程度上可以看成是用户编程接口,本身并不存储和处理数据,依赖于HDFS存储数据,依赖MR处理数据。有类SQL语言HiveQL,不完全支持SQL标准,如,不支持更新操作、索引和事务,其子查询和连接操作也存在很多限制。
  • Hive把HQL语句转换成MR任务后,采用批处理的方式对海量数据进行处理。数据仓库存储的是静态数据,很适合采用MR进行批处理。Hive还提供了一系列对数据进行提取、转换、加载的工具,可以存储、查询和分析存储在HDFS上的数据。
  • Hive中的表是纯逻辑表,就只是表的定义等,即表的元数据。Hive本身不存储数据,它完全依赖HDFS和MapReduce。这样就可以将结构化的数据文件映射为为一张数据库表,并提供完整的SQL查询功能,并将SQL语句最终转换为MapReduce任务进行运行。

Hive与Hadoop生态系统中其他组件的关系

  • Hive依赖于HDFS存储数据,依赖MR处理数据;
  • Pig可作为Hive的替代工具,是一种数据流语言和运行环境,适合用于在Hadoop平台上查询半结构化数据集,用于与ETL过程的一部分,即将外部数据装载到Hadoop集群中,转换为用户需要的数据格式;
  • HBase是一个面向列的、分布式可伸缩的数据库,可提供数据的实时访问功能,而Hive只能处理静态数据,主要是BI报表数据,Hive的初衷是为减少复杂MR应用程序的编写工作,HBase则是为了实现对数据的实时访问。


    image.png

Hive与传统数据库的对比

image.png

Hbase和Hive区别

Hbase和Hive在大数据架构中处在不同位置,Hbase主要解决实时数据查询问题,Hive主要解决数据处理和计算问题,一般是配合使用。

区别

Hbase: Hadoop database 的简称,也就是基于Hadoop数据库,是一种NoSQL数据库,主要适用于海量明细数据(十亿、百亿)的随机实时查询,如日志明细、交易清单、轨迹行为等。
Hive:Hive是Hadoop数据仓库,严格来说,不是数据库,主要是让开发人员能够通过SQL来计算和处理HDFS上的结构化数据,适用于离线的批量数据计算。通过元数据来描述Hdfs上的结构化文本数据,通俗点来说,就是定义一张表来描述HDFS上的结构化文本,包括各列数据名称,数据类型是什么等,方便我们处理数据,当前很多SQL ON Hadoop的计算引擎均用的是hive的元数据,如Spark SQLImpala等;
基于第一点,通过SQL来处理和计算HDFS的数据,Hive会将SQL翻译为Mapreduce来处理数据;
二、关系在大数据架构中,Hive和HBase是协作关系,数据流一般如下图:
通过ETL工具将数据源抽取到HDFS存储;通过Hive清洗、处理和计算原始数据;
HIve清洗处理后的结果,如果是面向海量数据随机查询场景的可存入Hbase数据应用从HBase查询数据;

image.png

比较

  1. Hive是基于MapReduce来处理数据,而MapReduce处理数据是基于行的模式;HBase处理数据是基于列的而不是基于行的模式,适合海量数据的随机访问。
  2. HBase的表是疏松的存储的,因此用户可以给行定义各种不同的列;而Hive表是稠密型,即定义多少列,每一行有存储固定列数的数据。
  3. Hive使用Hadoop来分析处理数据,而Hadoop系统是批处理系统,因此不能保证处理的低迟延问题;而HBase是近实时系统,支持实时查询。
  4. Hive不提供row-level的更新,它适用于大量append-only数据集(如日志)的批任务处理。而基于HBase的查询,支持和row-level的更新。
  5. Hive提供完整的SQL实现,通常被用来做一些基于历史数据的挖掘、分析。而HBase不适用与有join,多级索引,表关系复杂的应用场景。

推荐阅读更多精彩内容