functools

functools模块用于高阶函数:作用与或者返回其它函数的函数。一般来说,对于该模块,任何可调用对象都可以视为一个函数

[TOC]

cmp_to_key

参考 CSDN网站中的文章大星星的专栏

Help on function cmp_to_key in module functools:

cmp_to_key(mycmp)
    Convert a cmp= function into a key= function

帮助文档说的很简单 将 比较函数转换为key函数,这就引出三个问题1:什么是比较函数;2:什么是key函数;3:怎么将cmp函数转为key函数;3:为什么要py3要取消cmp函数

  1. 什么是比较函数

    py3中取消了cmp函数 而这个函数在py2中是BIF,定义如下:

    Help on built-in function cmp in module __builtin__:
    
    cmp(...)
        cmp(x, y) -> integer
    
        Return negative if x<y, zero if x==y, positive if x>y.
    
    

    如果是x小于y则返回一个负数;如果z>y则返回一个正数;如果x==y则返回0

  2. 什么是key函数
    key函数接受一个参数,返回一个可以用作排序的关键字(有点感觉是hash了)

  3. 怎么将cmp函数转为key函数

    • 因为python3不存在cmp函数了呀 导致很多函数不支持cmp了 比如看sorted的帮助文档:
      • py2
        Help on built-in function sorted in module __builtin__:
        
        sorted(...)
            sorted(iterable, cmp=None, key=None, reverse=False) --> new sorted list
        
      • py3
        Help on built-in function sorted in module builtins:
        
        sorted(iterable, key=None, reverse=False)
            Return a new list containing all items from the iterable in ascending order.
        
            A custom key function can be supplied to customise the sort order, and the
            reverse flag can be set to request the result in descending order.
        
        
    • 很简单 在py2设计过一个cmp函数了,但是到py3不能用了怎么办?用functools.cmp_to_key啊:
      1. 对序列 a=range(10)进行排序
      2. 首先定义一个比较函数:比较x+4和y的大小关系
        >>> cmp_func = lambda x,y: x+4 >y
        >>> cmp_func(3,10)
        False
        >>> cmp_func(3,1)
        True
        >>> cmp_func(3,7)
        False
        >>> cmp_func(3,6)
        True
        
      3. py2 排序的时候直接用cmp参数
        >>> sorted(a, cmp=cmp_func)
        [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
        
      4. py3没有cmp参数 只有key参数
        # 当然py2中也是可以采用这种方法的
        >>> sorted(a, key=functools.cmp_to_key(cmp_func))
        [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
        
    • 参考Chi's Blog网站中的文章Python3中排序的cmp函数的替代方法
## functools.reduce
> functools.reduce 和BIF reduce的功能很相似
以下是两种方法的定义
- functools.reduce
```
Help on built-in function reduce in module _functools:
reduce(...)
    reduce(function, sequence[, initial]) -> value

    Apply a function of two arguments cumulatively to the items of a sequence,
    from left to right, so as to reduce the sequence to a single value.
    For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates
    ((((1+2)+3)+4)+5).  If initial is present, it is placed before the items
    of the sequence in the calculation, and serves as a default when the
    sequence is empty.

```
- reduce
```
Help on built-in function reduce in module __builtin__:

reduce(...)
    reduce(function, sequence[, initial]) -> value

    Apply a function of two arguments cumulatively to the items of a sequence,
    from left to right, so as to reduce the sequence to a single value.
    For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates
    ((((1+2)+3)+4)+5).  If initial is present, it is placed before the items
    of the sequence in the calculation, and serves as a default when the
    sequence is empty.

```
可以看到两个方法连定义都一模一样, 但是以上是在python2中的测试结果,在python3中是没有reduce这个BIF的,这就是这两个函数的本质区别: **引入functools.reduce就是为了兼容python3的**,下面就以reduce说明一下功能:
> 对序列`sequence`连续使用函数`function`;如果给出 初始值`initial`,会首先将initial加到`sequence`的头部;第一次将序列的头两个元素进行`function`计算,以后每次都是使用前一次的计算结果和下一个元素进行计算

- 无初始值
```
>>> reduce(lambda x,y:x*y, xrange(1,6))
120
>>>
```
- 有初始值
```
>>> reduce(lambda x,y:x*y, xrange(1,6), 10)
1200
>>>
```


## functools.total_ordering

类装饰器 当你需要自定义一个类的比较方法时,默认你需要定义 等于eq 大于gt 小于lt 大于等于ge 小于等于le 有可能还要定义不等于(ne) 但是如果适用了这个类装饰器 那么只需要定义 eq 和 lt le gt ge中的一个就好了

@functools.total_ordering
class Student:
    def __eq__(self, other):
        return ((self.lastname.lower(), self.firstname.lower()) ==
                (other.lastname.lower(), other.firstname.lower()))

    def __lt__(self, other):
        return ((self.lastname.lower(), self.firstname.lower()) <
                (other.lastname.lower(), other.firstname.lower()))

print(dir(Student))
# ['__doc__', '__eq__', '__ge__', '__gt__', '__le__', '__lt__', '__module__']

partial

偏函数 最常用的应用场景是固定一个函数的某些参数

如果有大量二进制转换任务,我们可能定义一个in2函数

>>> int('10010', base=2)
18
>>> def in2(x, base=2):
...     return int(x, base)
...
>>> in2('1010')
10

但是我们也可以直接简单生成

>>> in22 = functools.partial(int, base=2)
>>> in22('11001')
25

partialmethod

类似于 partial 但是 只有 partialmethod才能作用于方法

lru_cache

缓存函数的运行结果:递归求斐波拉切数列时可以缓存某个结果;缓存网络请求等

lru_cache(maxsize=128, typed=False)
maxsize是指定最大缓存数量, typed则代表是否严格判断类型如果设置为False,则参数3.0不能使用参数为3的缓存

update_wrapper

update_wrapper 类似于 wraps 甚至 @wraps内部实际上就是基于update_wrapper来实现的

def wraps(wrapped, assigned=WRAPPER_ASSIGNMENTS, updated=WRAPPER_UPDATES):
    def decorator(wrapper):
        return update_wrapper(wrapper, wrapped=wrapped...)
    return decorator

wraps

装饰器会遗失被装饰函数的namedoc等属性,可以使用@wraps 来恢复

singledispatch

JAVA等语言可以类的重载,可以为同一个方法不同类型参数执行不同的方法, 但Python不支持同名方法有不同的参数类型,python给我们的解决方案是使用 singledispatch 来动态指定相应的方法所接收的参数类型,而不用把参数判断放到方法内部去判断从而降低代码的可读性

推荐阅读更多精彩内容

  • 1 functools函数 functools模块用于高阶函数:作用与或者返回其它函数的函数。一般来说,对于该模块...
    lakerszhy阅读 9,246评论 0 7
  • functools模块提供了高阶函数功能:函数可以作为或者返回其他函数。通常, 任何可调用对象可以被视为在本模块的...
    cb9e58ff5a37阅读 863评论 0 0
  • 上海餐饮管理系统哪家好 古语有云:“民以食为天”,衣食住行是人们的基本需求,同时也对应催生了庞大的商业市场。餐饮行...
    水果生鲜阅读 165评论 0 0
  • Facebook 在 2016 年 6 月底,月活用户数量达到了 16.5 亿——这几乎是全球人口总数的 1/5 ...
    做不死阅读 160评论 0 0
  • 文图/胡多钱 自媒体从美国新闻学会媒体中心于2003年7月发布了由谢因波曼与克里斯威理斯两位联合提出的“We Me...
    胡多钱阅读 961评论 0 1
  • 我和他在一起那么恩爱,他上课为了和我坐一起,不怕老师批评和我旁边的人换座位,我们上课手牵手,彼此有说不完的话 记得...
    唇吻清茶阅读 77评论 0 0
  • Observalbe的订阅与事件发送过程的关联 Cold Observalbes:多次订阅都重用同一个Observ...
    Wavky阅读 109评论 0 0