机器学习中常用评估指标汇总

评估指标 Evaluation metrics 可以说明模型的性能,辨别模型的结果。

我们建立一个模型后,计算指标,从指标获取反馈,再继续改进模型,直到达到理想的准确度。在预测之前检查模型的准确度至关重要,而不应该建立一个模型后,就直接将模型应用到看不见的数据上。

今天先来简单介绍几种回归和分类常用的评估方法。


回归:

均方误差:

其中 D 为数据分布,p 为概率密度函数。

from sklearn.metrics import mean_squared_error
y_true = [3, -0.5, 2, 7]
y_pred = [2.5, 0.0, 2, 8]
mean_squared_error(y_true, y_pred)

0.375

分类:

二分类 and 多分类:

错误率

精度


二分类
混淆矩阵:
from sklearn.metrics import confusion_matrix
pipe_svc.fit(X_train, y_train)
y_pred = pipe_svc.predict(X_test)
confmat = confusion_matrix(y_true=y_test, y_pred=y_pred)
print(confmat)

[[71  1]
[ 2 40]]

单纯用 错误率,精度 是无法知道下面的问题时:

查准率
应用场景-当你想知道“挑出的西瓜中有多少比例是好瓜”

from sklearn.metrics import precision_score
from sklearn.metrics  import recall_score, f1_score
print('Precision: %.3f' % precision_score(y_true=y_test, y_pred=y_pred))

Precision: 0.976

查全率:
应用场景-当你想知道“所有好瓜盅有多少比例被挑出来了”

print('Recall: %.3f' % recall_score(y_true=y_test, y_pred=y_pred))

Recall: 0.952

P-R 图:
当一个学习器的 P-R 曲线被另一个学习器的包住,那么后者性能优于前者。
有交叉时,需要在具体的查准率或者查全率下进行比较。

平衡点 (Break Event Point BEP):
即上图中三个红点。
综合考虑查准率,查全率的度量
当 查准率=查全率 时的点,谁大谁比较优。

F1 度量:
也是综合考虑查准率,查全率的度量,比 BEP 更常用:

print('F1: %.3f' % f1_score(y_true=y_test, y_pred=y_pred))

F1: 0.964

Fβ:
可以表达对查准率,查全率的不同重视度,
β > 1 则查全率有更大影响,β < 1 则查准率有更大影响,β = 1 则为 F1。


One vs. All (OvA) 分类问题

这时会在 n 个二分类问题上综合考虑查准率,查全率。

宏~ :先在每个混淆矩阵上计算率,再求平均

宏查准率

宏查全率

宏 F1

微~ :先将各个混淆矩阵上对应元素求平均,再计算率

微查准率

微查全率

微 F1


ROC :
反映敏感性和特异性连续变量的综合指标,roc曲线上每个点反映着对同一信号刺激的感受性。

纵轴为 TPR 真正例率,预测为正且实际为正的样本占所有正例样本的比例
横轴为 FPR 假正例率。预测为正但实际为负的样本占所有负例样本的比例

对角线对应的是 “随机猜想”


当一个学习器的 ROC 曲线被另一个学习器的包住,那么后者性能优于前者。
有交叉时,需要用 AUC 进行比较。

AUC:
ROC 曲线下的面积

import numpy as np
from sklearn.metrics import roc_auc_score
y_true = np.array([0, 0, 1, 1])
y_scores = np.array([0.1, 0.4, 0.35, 0.8])
roc_auc_score(y_true, y_scores)

0.75

代价敏感

现实任务中,当不同类型的错误具有不同的影响后果时,它们的代价也是不一样的。

此时,可以设定
代价矩阵 cost matrix:
如果将第 0 类预测为 第 1 类造成的损失更大,则 cost01 > cost10,相反将第 1 类预测为 第 0 类造成的损失更大,则 cost01 < cost10 :

则带有“代价敏感”的错误率为:

其中 0 为正类,1 为反类,D+ 为正例子集合,D- 为反例子集合。

代价曲线 cost curve:
非均等代价下,反应学习器的期望总体代价。
横轴为取值为[0,1]的正例概率代价:

纵轴为取值为[0,1]的归一化代价:


其中 p 为正例的概率,FPR = 1 - TPR。


资料:
机器学习
Python Machine Learning


推荐阅读 历史技术博文链接汇总
http://www.jianshu.com/p/28f02bb59fe5
也许可以找到你想要的:
[入门问题][TensorFlow][深度学习][强化学习][神经网络][机器学习][自然语言处理][聊天机器人]

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 158,117评论 4 360
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 66,963评论 1 290
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 107,897评论 0 240
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,805评论 0 203
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,208评论 3 286
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,535评论 1 216
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,797评论 2 311
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,493评论 0 197
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,215评论 1 241
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,477评论 2 244
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 31,988评论 1 258
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,325评论 2 252
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 32,971评论 3 235
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,055评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,807评论 0 194
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,544评论 2 271
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,455评论 2 266

推荐阅读更多精彩内容