比特币白皮书概念解读

点对点技术(P2P):(peer-to-peer, 简称P2P),又称点对点技术,是无中心服务器、依靠用户群(peers)交换信息的互联网体系,它的作用在于,减低以往网络传输中的节点,以降低数据丢失的风险。与有中心服务器的中央网络系统不同,对等网络的每个用户端既是一个节点,也有服务器的功能,任何一个节点无法直接找到其他节点,必须依靠其户群进行信息交流。

P2P节点能遍布整个互联网,也给包括开发者在内的任何人、组织、或政府带来监控难题。P2P在网络隐私要求高和文件共享领域中,得到了广泛的应用。使用纯P2P技术的网络系统有比特币Gnutella,或自由网等。另外,P2P技术也被使用在类似VoIP等实时媒体业务的数据通信中。有些网络(如NapsterOpenNAP,或IRC @find)包括搜索的一些功能,也使用客户端-服务器结构,而使用P2P结构来实现另外一些功能。这种网络设计模型不同于客户端-服务器模型,在客户端-服务器模型中通信通常来往于一个中央服务器。

P2P网络的一个重要的目标就是让所有的客户端都能提供资源,包括带宽,存储空间和计算能力。因此,当有节点加入且对系统请求增多,整个系统的容量也增大。这是具有一组固定服务器的Client-Server结构不能实现的,因为在上述这种结构中,客户端的增加意味着所有用户更慢的数据传输。

P2P网络的分布特性通过在多节点上复制数据,也增加了防故障的健壮性,并且在纯P2P网络中,节点不需要依靠一个中心索引服务器来发现数据。在后一种情况下,系统也不会出现单点崩溃。

当用P2P来描述Napster 网络时,对等协议被认为是重要的,但是,实际中,Napster 网络获取的成就是对等节点(就像网络的末枝)联合一个中心索引来实现。这可以使它能快速并且高效的定位可用的内容。对等协议只是一种通用的方法来实现这一点。

无中心服务器的对等网络系统


有中心服务器中央网络系统

数字签名(Digital signatures):是一种类似写在上的普通的物理签名,但是使用了公钥加密领域的技术实现,用于鉴别数字信息的方法。一套数字签名通常定义两种互补的运算,一个用于签名,另一个用于验证,但法条中的电子签章与数字签名,代表之意义并不相同,电子签章用以辨识及确认电子文件签署人身份、资格及电子文件真伪者。而数字签名则是以数学算法或其他方式运算对其加密,才形成电子签章,意即使用数字签名才创造出电子签章。

数字签名不是指将签名扫描成数字图像,或者用触摸板获取的签名,更不是落款

数字签名了的文件的完整性是很容易验证的(不需要骑缝章骑缝签名,也不需要笔迹鉴定),而且数字签名具有不可抵赖性(即不可否认性),不需要笔迹专家来验证。

双重支付(double-spending):一种数位货币失败模式的构想,即同一个数位token可以被花用两次以上。不像具有实体的符号货币硬币,电子档案可被复制,所以花用这个行为并不会从原持有者身上移除拥有的状态,也就是"建立"已支付但未移除的货币,加上属于收款者的已支付的同金额货币,或是使收款者凭空多出多重支付的金额,犹如伪钞般,造成通货膨胀而导致货币贬值,从而不再让人信任并愿意持有及流通[1][2]防止双重支付需要其他的措施。

哈希函数

随机散列(hashing):哈希函数(Hash function)是一种从任何一种数据中创建小的数字“指纹”的方法。散列函数把消息或数据压缩成摘要,使得数据量变小,将数据的格式固定下来。该函数将数据打乱混合,重新创建一个叫做散列值(hash values,hash codes,hash sums,或hashes)的指纹。散列值通常用一个短的随机字母和数字组成的字符串来代表。好的散列函数在输入域中很少出现散列冲突。在散列表数据处理中,不抑制冲突来区别数据,会使得数据库记录更难找到。

时间戳

时间戳(timestamps):一个能表示一份数据在某个特定时间之前已经存在的、 完整的、 可验证的数据,通常是一个字符序列,唯一地标识某一刻的时间。使用数字签名技术产生的数据, 签名的对象包括了原始文件信息、 签名参数、 签名时间等信息。广泛的运用在知识产权保护、 合同签字、 金融帐务、 电子报价投标、 股票交易等方面。

工作量证明(proof-of-work):是一种对应服务与资源滥用、或是阻断服务攻击的经济对策。一般是要求用户进行一些耗时适当的复杂运算,并且答案能被服务方快速验算,以此耗用的时间、设备与能源做为担保成本,以确保服务与资源是被真正的需求所使用。此一概念最早由Cynthia DworkMoni Naor于1993年的学术论文提出[1],而工作量证明一词则是在1999年由Markus Jakobsson与Ari Juels.[2]所发表。现时此一技术成为了加密货币的主流共识机制之一,如比特币所采用的技术。

链条

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 157,298评论 4 360
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 66,701评论 1 290
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 107,078评论 0 237
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,687评论 0 202
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,018评论 3 286
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,410评论 1 211
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,729评论 2 310
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,412评论 0 194
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,124评论 1 239
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,379评论 2 242
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 31,903评论 1 257
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,268评论 2 251
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 32,894评论 3 233
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,014评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,770评论 0 192
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,435评论 2 269
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,312评论 2 260

推荐阅读更多精彩内容