# Pytorch中的仿射变换(affine_grid)

``````from torchvision import transforms
from PIL import Image
import matplotlib.pyplot as plt

%matplotlib inline

img_path = "图片文件路径"
img_torch = transforms.ToTensor()(Image.open(img_path))

plt.imshow(img_torch.numpy().transpose(1,2,0))
plt.show()
``````

## 平移操作

### 普通方式

``````import numpy as np
import torch

theta = np.array([
[1,0,50],
[0,1,100]
])
# 变换1：可以实现缩放/旋转，这里为 [[1,0],[0,1]] 保存图片不变
t1 = theta[:,[0,1]]
# 变换2：可以实现平移
t2 = theta[:,[2]]

_, h, w = img_torch.size()
new_img_torch = torch.zeros_like(img_torch, dtype=torch.float)
for x in range(w):
for y in range(h):
pos = np.array([[x], [y]])
npos = t1@pos+t2
nx, ny = npos[0][0], npos[1][0]
if 0<=nx<w and 0<=ny<h:
new_img_torch[:,ny,nx] = img_torch[:,y,x]
plt.imshow(new_img_torch.numpy().transpose(1,2,0))
plt.show()
``````

### pytorch 方式

``````from torch.nn import functional as F

theta = torch.tensor([
[1,0,-0.2],
[0,1,-0.4]
], dtype=torch.float)
grid = F.affine_grid(theta.unsqueeze(0), img_torch.unsqueeze(0).size())
output = F.grid_sample(img_torch.unsqueeze(0), grid)
new_img_torch = output[0]
plt.imshow(new_img_torch.numpy().transpose(1,2,0))
plt.show()
``````

• 要使用 pytorch 的平移操作，只需要两步：
• 创建 grid：`grid = torch.nn.functional.affine_grid(theta, size)`，其实我们可以通过调节 `size` 设置所得到的图像的大小(相当于resize)；
• grid_sample 进行重采样：`outputs = torch.nn.functional.grid_sample(inputs, grid, mode='bilinear')`
• theta 的第三列为平移比例，向右为负，向下为负；

``````from torch.nn import functional as F

theta = torch.tensor([
[1,0,-0.2],
[0,1,-0.4]
], dtype=torch.float)
# 修改size
N, C, W, H = img_torch.unsqueeze(0).size()
size = torch.Size((N, C, W//2, H//3))
grid = F.affine_grid(theta.unsqueeze(0), size)
output = F.grid_sample(img_torch.unsqueeze(0), grid)
new_img_torch = output[0]
plt.imshow(new_img_torch.numpy().transpose(1,2,0))
plt.show()
``````

## 缩放操作

### 普通方式

``````import numpy as np
import torch

theta = np.array([
[2,0,0],
[0,2,0]
])
t1 = theta[:,[0,1]]
t2 = theta[:,[2]]

_, h, w = img_torch.size()
new_img_torch = torch.zeros_like(img_torch, dtype=torch.float)
for x in range(w):
for y in range(h):
pos = np.array([[x], [y]])
npos = t1@pos+t2
nx, ny = npos[0][0], npos[1][0]
if 0<=nx<w and 0<=ny<h:
new_img_torch[:,ny,nx] = img_torch[:,y,x]
plt.imshow(new_img_torch.numpy().transpose(1,2,0))
plt.show()
``````

### pytorch 方式

``````from torch.nn import functional as F

theta = torch.tensor([
[0.5, 0  , 0],
[0  , 0.5, 0]
], dtype=torch.float)
grid = F.affine_grid(theta.unsqueeze(0), img_torch.unsqueeze(0).size())
output = F.grid_sample(img_torch.unsqueeze(0), grid)
new_img_torch = output[0]
plt.imshow(new_img_torch.numpy().transpose(1,2,0))
plt.show()
``````

## 旋转操作

### 普通操作

``````import numpy as np
import torch
import math

angle = 30*math.pi/180
theta = np.array([
[math.cos(angle),math.sin(-angle),0],
[math.sin(angle),math.cos(angle) ,0]
])
t1 = theta[:,[0,1]]
t2 = theta[:,[2]]

_, h, w = img_torch.size()
new_img_torch = torch.zeros_like(img_torch, dtype=torch.float)
for x in range(w):
for y in range(h):
pos = np.array([[x], [y]])
npos = t1@pos+t2
nx, ny = int(npos[0][0]), int(npos[1][0])
if 0<=nx<w and 0<=ny<h:
new_img_torch[:,ny,nx] = img_torch[:,y,x]
plt.imshow(new_img_torch.numpy().transpose(1,2,0))
plt.show()
``````

### pytorch 操作

``````from torch.nn import functional as F
import math

angle = -30*math.pi/180
theta = torch.tensor([
[math.cos(angle),math.sin(-angle),0],
[math.sin(angle),math.cos(angle) ,0]
], dtype=torch.float)
grid = F.affine_grid(theta.unsqueeze(0), img_torch.unsqueeze(0).size())
output = F.grid_sample(img_torch.unsqueeze(0), grid)
new_img_torch = output[0]
plt.imshow(new_img_torch.numpy().transpose(1,2,0))
plt.show()
``````

pytorch 以图片中心为原点进行旋转，并且在旋转过程中会发生图片缩放，如果选择角度变为 90°，图片为：

## 转置操作

### 普通操作

``````import numpy as np
import torch

theta = np.array([
[0,1,0],
[1,0,0]
])
t1 = theta[:,[0,1]]
t2 = theta[:,[2]]

_, h, w = img_torch.size()
new_img_torch = torch.zeros_like(img_torch, dtype=torch.float)
for x in range(w):
for y in range(h):
pos = np.array([[x], [y]])
npos = t1@pos+t2
nx, ny = npos[0][0], npos[1][0]
if 0<=nx<w and 0<=ny<h:
new_img_torch[:,ny,nx] = img_torch[:,y,x]
plt.imshow(new_img_torch.numpy().transpose(1,2,0))
plt.show()
``````

### pytorch 操作

``````from torch.nn import functional as F

theta = torch.tensor([
[0, 1, 0],
[1, 0, 0]
], dtype=torch.float)
N, C, H, W = img_torch.unsqueeze(0).size()
grid = F.affine_grid(theta.unsqueeze(0), torch.Size((N, C, W, H)))
output = F.grid_sample(img_torch.unsqueeze(0), grid)
new_img_torch = output[0]
plt.imshow(new_img_torch.numpy().transpose(1,2,0))
plt.show()
``````

• 序言：七十年代末，一起剥皮案震惊了整个滨河市，随后出现的几起案子，更是在滨河造成了极大的恐慌，老刑警刘岩，带你破解...
沈念sama阅读 117,889评论 1 238
• 序言：滨河连续发生了三起死亡事件，死亡现场离奇诡异，居然都是意外死亡，警方通过查阅死者的电脑和手机，发现死者居然都...
沈念sama阅读 51,316评论 1 200
• 文/潘晓璐 我一进店门，熙熙楼的掌柜王于贵愁眉苦脸地迎上来，“玉大人，你说我怎么就摊上这事。” “怎么了？”我有些...
开封第一讲书人阅读 73,100评论 0 167
• 文/不坏的土叔 我叫张陵，是天一观的道长。 经常有香客问我，道长，这世上最难降的妖魔是什么？ 我笑而不...
开封第一讲书人阅读 35,922评论 0 127
• 正文 为了忘掉前任，我火速办了婚礼，结果婚礼上，老公的妹妹穿的比我还像新娘。我一直安慰自己，他们只是感情好，可当我...
茶点故事阅读 42,725评论 1 205
• 文/花漫 我一把揭开白布。 她就那样静静地躺着，像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上，一...
开封第一讲书人阅读 35,487评论 1 124
• 那天，我揣着相机与录音，去河边找鬼。 笑死，一个胖子当着我的面吹牛，可吹牛的内容都是我干的。 我是一名探鬼主播，决...
沈念sama阅读 27,456评论 2 206
• 文/苍兰香墨 我猛地睁开眼，长吁一口气：“原来是场噩梦啊……” “哼！你这毒妇竟也来了？” 一声冷哼从身侧响起，我...
开封第一讲书人阅读 26,600评论 0 119
• 想象着我的养父在大火中拼命挣扎，窒息，最后皮肤化为焦炭。我心中就已经是抑制不住地欢快，这就叫做以其人之道，还治其人...
爱写小说的胖达阅读 25,554评论 5 171
• 序言：老挝万荣一对情侣失踪，失踪者是张志新（化名）和其女友刘颖，没想到半个月后，有当地人在树林里发现了一具尸体，经...
沈念sama阅读 29,621评论 0 178
• 正文 独居荒郊野岭守林人离奇死亡，尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
茶点故事阅读 26,868评论 1 167
• 正文 我和宋清朗相恋三年，在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
茶点故事阅读 28,109评论 1 177
• 白月光回国，霸总把我这个替身辞退。还一脸阴沉的警告我。[不要出现在思思面前， 不然我有一百种方法让你生不如死。]我...
爱写小说的胖达阅读 22,438评论 0 25
• 序言：一个原本活蹦乱跳的男人离奇死亡，死状恐怖，灵堂内的尸体忽然破棺而出，到底是诈尸还是另有隐情，我是刑警宁泽，带...
沈念sama阅读 25,039评论 2 163
• 正文 年R本政府宣布，位于F岛的核电站，受9级特大地震影响，放射性物质发生泄漏。R本人自食恶果不足惜，却给世界环境...
茶点故事阅读 28,872评论 3 172
• 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹，春花似锦、人声如沸。这庄子的主人今日做“春日...
开封第一讲书人阅读 23,857评论 0 4
• 文/苍兰香墨 我抬头看了看天上的太阳。三九已至，却和暖如春，着一层夹袄步出监牢的瞬间，已是汗流浃背。 一阵脚步声响...
开封第一讲书人阅读 23,940评论 0 113
• 我被黑心中介骗来泰国打工， 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留，地道东北人。 一个月前我还...
沈念sama阅读 30,059评论 2 188
• 正文 我出身青楼，却偏偏与公主长得像，于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子，可洞房花烛夜当晚...
茶点故事阅读 30,501评论 2 188