你不知道的dispatch_once

- (void)viewDidLoad {
    [super viewDidLoad];
    static dispatch_once_t onceToken;
    dispatch_once(&onceToken, ^{
        [self viewDidLoad];
    });
}

这样调用会发生什么?
主线程挂起,应用程序没有响应,Why
我们刨根问底一下,自然会想到,dispatch_once是怎样实现的。

我们知道,dispatch_once的作用是让block只执行一次,并且支持多线程,那么当多个线程同时调用dispatch_once函数会怎么样呢?


Sequence Process1-6.png

我么看到,每次进来一个线程,都会生成一个struct

struct _dispatch_once_waiter_s {
    volatile struct _dispatch_once_waiter_s *volatile dow_next;
    _dispatch_thread_semaphore_t dow_sema;
};

其中dow_sema是用来存储当前线程的信号量,通过如下方式

 dow.dow_sema = _dispatch_get_thread_semaphore();

dow_next则指向了下一个结构体变量(下一个进来的线程),当然,链表的tail节点,粗略的说也就是第一个dow结构体的dow_sema和dow_next都为null。


Sequence Process1-7.png

当block执行完, 通过

dispatch_atomic_xchg(vval, DISPATCH_ONCE_DONE)

会将onceToken(vval)标记成block执行完成状态,同时返回链表的head节点(因为之前,vval是用来当做指向头结点指针用的,因此只要* vval一下即可),onceToken即能当标记位又能当指针,真是又当爹又当妈啊。
每次释放哨兵的信号量的时候,也就是之前被阻塞的线程可以继续运行。

dispatch_atomic_cmpxchg(vval, tmp, &dow)

原子操作,比较tmp和&dow是否相等。

有了这些储备,我们解释一下上面的现象,当第一次dispatch_once执行的时候,在执行block的时候,会再次进入dispatch_once函数,并且生成一个dow(_dispatch_once_waiter_s)结构体,而此时onceToken还没有标记为完成状态,并且新的dow结构体和第一次的dow不相等,这个结构体会获取主线程的信号量,紧接着,执行wait,然后应用程序挂起。对应部分代码如下

            if (tmp == DISPATCH_ONCE_DONE) {
                break;
            }
            dispatch_atomic_store_barrier();
            // 14. 如果当前dispatch_once执行的block没有结束,那么就将这些
            // 后续请求添加到链表当中
            if (dispatch_atomic_cmpxchg(vval, tmp, &dow)) {
                dow.dow_next = tmp;
                _dispatch_thread_semaphore_wait(dow.dow_sema);
            }

还有个有趣的问题
1.当家可以试试直接给onceToken写成~0l,看看会发生什么?

下面是dispatch_once的源码

#include "internal.h"

#undef dispatch_once
#undef dispatch_once_f

struct _dispatch_once_waiter_s {
    volatile struct _dispatch_once_waiter_s *volatile dow_next;
    _dispatch_thread_semaphore_t dow_sema;
};

#define DISPATCH_ONCE_DONE ((struct _dispatch_once_waiter_s *)~0l)


#ifdef __BLOCKS__
// 1. 我们的应用程序调用的入口
void
dispatch_once(dispatch_once_t *val, dispatch_block_t block)
{
    struct Block_basic *bb = (void *)block;

    // 2. 内部逻辑
    dispatch_once_f(val, block, (void *)bb->Block_invoke);
}
#endif

DISPATCH_NOINLINE
void
dispatch_once_f(dispatch_once_t *val, void *ctxt, dispatch_function_t func)
{
    struct _dispatch_once_waiter_s * volatile *vval =
            (struct _dispatch_once_waiter_s**)val;

    // 3. 地址类似于简单的哨兵位
    struct _dispatch_once_waiter_s dow = { NULL, 0 };

    // 4. 在Dispatch_Once的block执行期进入的dispatch_once_t更改请求的链表
    struct _dispatch_once_waiter_s *tail, *tmp;

    // 5.局部变量,用于在遍历链表过程中获取每一个在链表上的更改请求的信号量
    _dispatch_thread_semaphore_t sema;

    // 6. Compare and Swap(用于首次更改请求)
    if (dispatch_atomic_cmpxchg(vval, NULL, &dow)) {
        dispatch_atomic_acquire_barrier();

        // 7.调用dispatch_once的block
        _dispatch_client_callout(ctxt, func);

        dispatch_atomic_maximally_synchronizing_barrier();
        //dispatch_atomic_release_barrier(); // assumed contained in above

        // 8. 更改请求成为DISPATCH_ONCE_DONE(原子性的操作)
        tmp = dispatch_atomic_xchg(vval, DISPATCH_ONCE_DONE);
        tail = &dow;

        // 9. 发现还有更改请求,继续遍历
        while (tail != tmp) {

            // 10. 如果这个时候tmp的next指针还没更新完毕,等一会
            while (!tmp->dow_next) {
                _dispatch_hardware_pause();
            }

            // 11. 取出当前的信号量,告诉等待者,我这次更改请求完成了,轮到下一个了
            sema = tmp->dow_sema;
            tmp = (struct _dispatch_once_waiter_s*)tmp->dow_next;
            _dispatch_thread_semaphore_signal(sema);
        }
    } else {
        // 12. 非首次请求,进入这块逻辑块
        dow.dow_sema = _dispatch_get_thread_semaphore();
        for (;;) {
            // 13. 遍历每一个后续请求,如果状态已经是Done,直接进行下一个
            // 同时该状态检测还用于避免在后续wait之前,信号量已经发出(signal)造成
            // 的死锁
            tmp = *vval;
            if (tmp == DISPATCH_ONCE_DONE) {
                break;
            }
            dispatch_atomic_store_barrier();
            // 14. 如果当前dispatch_once执行的block没有结束,那么就将这些
            // 后续请求添加到链表当中
            if (dispatch_atomic_cmpxchg(vval, tmp, &dow)) {
                dow.dow_next = tmp;
                _dispatch_thread_semaphore_wait(dow.dow_sema);
            }
        }
        _dispatch_put_thread_semaphore(dow.dow_sema);
    }
}

参考文章:
http://blog.csdn.net/fishmai/article/details/52047249

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 158,560评论 4 361
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,104评论 1 291
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,297评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,869评论 0 204
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,275评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,563评论 1 216
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,833评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,543评论 0 197
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,245评论 1 241
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,512评论 2 244
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,011评论 1 258
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,359评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,006评论 3 235
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,062评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,825评论 0 194
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,590评论 2 273
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,501评论 2 268

推荐阅读更多精彩内容