深入浅出Handler内部原理

Handler作为Android应用层开发,进程通信一大重点,可以说是使用最频繁的一个机制,不管是IntentService,ThreadHandler都绕不开它。本文详解Handler机制的内部源码

深入剖析Handler,没有看错,比别人更深更精准!

看本文可以回答你这几个问题:

  1. UI线程的Looper在哪里创建?

  2. MessageQueue真的是个队列吗?

  3. 延迟处理机制的原理?

  4. Handler中的Message同步和MessageQueue同步?
    @[toc]

一、Handler介绍

Handler在Android os包下,当我们创建Handler时,它会绑定一个线程,并且创建一个消息队列,通过发送Message或者Runnable对象到队列并轮询取出,实现关联。
我们常用的Handler功能是,定时执行Runnable或者处理不同线程通信的问题,比如UI线程和子线程等。
由此可见Handler内部机制中的几大元素:Handler,Message,MessageQueue,Looper,ThreadLocal等,接下来,分别查看它的内部源码。


image

二、Handler源码剖析

Handler作为封装对外的处理器,我们来看看它对外的接口内部是做了哪些操作。

1. Handler构造函数:

它的构造函数,我归纳为三种方式,分别是:
1.传入自定义Looper对象,
2.继承Handler实现Callback接口模式,
3.默认创建的Looper模式,
其中2,3是我们常用的,当然1和2也能同时使用,callback接口中实现handleMessage,用于我们自定义Handler是实现回调用的。还有个被hide隐藏的传参,async是否同步,默认是不同步,且不支持设置同步模式。

可以传入自定义的Looper,Callback接口

public Handler(Looper looper, Callback callback, boolean async) {
    mLooper = looper;
    mQueue = looper.mQueue;
    mCallback = callback;
    mAsynchronous = async;
}

常规的构造方法如下:

  • 其中FIND_POTENTIAL_LEAKS标签是检查“继承类是否为非静态内部类”标签,我们知道,非静态内部类持有对象,容易导致内存泄漏的问题,可以查看我的《Android内存优化分析篇》

  • mAsynchronous可以看到一直是false

       public Handler(Callback callback, boolean async) {
          if (FIND_POTENTIAL_LEAKS) {
              final Class<? extends Handler> klass = getClass();
              if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                      (klass.getModifiers() & Modifier.STATIC) == 0) {
                  Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                      klass.getCanonicalName());
              }
          }
    
    
          mLooper = Looper.myLooper();
          if (mLooper == null) {
              throw new RuntimeException(
                  "Can't create handler inside thread that has not called Looper.prepare()");
          }
          mQueue = mLooper.mQueue;
          mCallback = callback;
          mAsynchronous = async;
      }
    

2. 创建Looper对象和mQueue消息队列

由上构造函数中调用Looper.myLooper();创建了Looper对象,并取用了新创建Looper对象内部的mQueue队列,详解下Looper分析

3. sendMessage

  • 其中sendEmptyMessage通过obtion新获取了一个Message对象

      public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
          Message msg = Message.obtain();
          msg.what = what;
          return sendMessageDelayed(msg, delayMillis);
      }
    
  • 发送消息:sendMessageDelayed--->sendMessageAtTime--->enqueueMessage

  • 注意到,在调用sendMessageAtTime时,传入的时间值: 系统时钟+delayMillis

  • 其中将 msg.target标记为当前Handler对象

  • 最终调用了MessageQueue的enqueueMessage,看后面MessageQueue分析

      //----------1
      public final boolean sendMessage(Message msg)
      {
          return sendMessageDelayed(msg, 0);
      }
      //----------2
       public final boolean sendMessageDelayed(Message msg, long delayMillis)
      {
          if (delayMillis < 0) {
              delayMillis = 0;
          }
          return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
      }
      //---------3
      public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
          MessageQueue queue = mQueue;
          if (queue == null) {
              RuntimeException e = new RuntimeException(
                      this + " sendMessageAtTime() called with no mQueue");
              Log.w("Looper", e.getMessage(), e);
              return false;
          }
          return enqueueMessage(queue, msg, uptimeMillis);
      }
      //----------4
      private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
          msg.target = this;
          if (mAsynchronous) {
              msg.setAsynchronous(true);
          }
          return queue.enqueueMessage(msg, uptimeMillis);
      }
    

4. removeMessages

从队列删除

5. post(Runnable r)

  • 在getPostMessage中讲Runnable封装成了Message对象

      public final boolean post(Runnable r)
      {
         return  sendMessageDelayed(getPostMessage(r), 0);
      }
    
       private static Message getPostMessage(Runnable r) {
          Message m = Message.obtain();
          m.callback = r;
          return m;
      }
    

6. dispatchMessage和handlerMessage

  • 我们看到dispatchMessage调用了callback和handlerMessage分发Message结果

  • 那么,前面我们看到了经常调用的sendMessage,那么回调是在什么时候调用的呢?

  • 让我们接下来一起看看Looper类吧。

      public void dispatchMessage(Message msg) {
          if (msg.callback != null) {
              handleCallback(msg);
          } else {
              if (mCallback != null) {
                  if (mCallback.handleMessage(msg)) {
                      return;
                  }
              }
              handleMessage(msg);
          }
      }
    
       public void handleMessage(Message msg) {}
    

三、Looper源码剖析

看looper做了什么,首先看mylooper方法,还记得吗,在Handler初始化时创建Looper对象调用的方法

1. myLooper方法

  • 调用sThreadLocal取出一个looper对象

      public static @Nullable Looper myLooper() {
              return sThreadLocal.get();
        }
    
      // sThreadLocal.get() will return null unless you've called prepare().
      static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
    

2. Looper.prepare()创建对象

  • 上面看到mylooper从sThreadLocal取出,但是什么时候存的呢,looper又是如何创建?

  • 由下看出Looper通过prepare创建并存入sThreadLocal,在构造同时创建MessageQueue

  • 标记成员mThread为当前线程

  • quitAllowed标识能否安全退出

      public static void prepare() {
              prepare(true);
        }
    
      private static void prepare(boolean quitAllowed) {
          if (sThreadLocal.get() != null) {
              throw new RuntimeException("Only one Looper may be created per thread");
          }
          sThreadLocal.set(new Looper(quitAllowed));
      }
    
      private Looper(boolean quitAllowed) {
          mQueue = new MessageQueue(quitAllowed);
          mThread = Thread.currentThread();
      }
    

3. UI线程调用Handler,Looper怎么创建

  • prepareMainLooper:在当前线程初始化looper,在ActivityThread调用,也就是我们创建Activity时已经创建了Looper了

  • prepare(false):由于在ActivityThread创建,是不能安全退出的

      /**
       * Initialize the current thread as a looper, marking it as an
       * application's main looper. The main looper for your application
       * is created by the Android environment, so you should never need
       * to call this function yourself.  See also: {@link #prepare()}
       */
      public static void prepareMainLooper() {
          prepare(false);
          synchronized (Looper.class) {
              if (sMainLooper != null) {
                  throw new IllegalStateException("The main Looper has already been prepared.");
              }
              sMainLooper = myLooper();
          }
      }
    
       //-------->ActivityThread: Main:
       public static void main(String[] args) {
    
          ---
    
          Looper.prepareMainLooper();
    
          ActivityThread thread = new ActivityThread();
          thread.attach(false);
    
          if (sMainThreadHandler == null) {
              sMainThreadHandler = thread.getHandler();
          }
    
          if (false) {
              Looper.myLooper().setMessageLogging(new
                      LogPrinter(Log.DEBUG, "ActivityThread"));
          }
    
          // End of event ActivityThreadMain.
          Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
          Looper.loop();
      }
    

4. Looper.loop()

  • UI线程创建Looper,上ActivityThread中,在调用prepare后接着调用Looper.loop
  • loop通过 for (;;)死循环,从queue中取下一则消息
  • 其中 msg.target.dispatchMessage(msg);,在上面Handler中将handler对象传给了looper
  •   public static void loop() {
          final Looper me = myLooper();
          if (me == null) {
              throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
          }
          final MessageQueue queue = me.mQueue;
    
          //--------------确保同一进程
          Binder.clearCallingIdentity();
          final long ident = Binder.clearCallingIdentity();
    
          for (;;) {
              Message msg = queue.next(); // might block
              if (msg == null) {
                  // No message indicates that the message queue is quitting.
                  return;
              }
    
              //--------------打印日志
              final Printer logging = me.mLogging;
              if (logging != null) {
                  logging.println(">>>>> Dispatching to " + msg.target + " " +
                          msg.callback + ": " + msg.what);
              }
              
              //--------------从队列中获取分发消息延时
              final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
              
              //--------------Trace标记,用于记录message分发完成
              final long traceTag = me.mTraceTag;
              if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                  Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
              }
              final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
              final long end;
              try {
                  msg.target.dispatchMessage(msg);
                  end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
              } finally {
                  if (traceTag != 0) {
                      Trace.traceEnd(traceTag);
                  }
              }
              if (slowDispatchThresholdMs > 0) {
                  final long time = end - start;
                  if (time > slowDispatchThresholdMs) {
                      Slog.w(TAG, "Dispatch took " + time + "ms on "
                              + Thread.currentThread().getName() + ", h=" +
                              msg.target + " cb=" + msg.callback + " msg=" + msg.what);
                  }
              }
    
              if (logging != null) {
                  logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
              }
    
              // Make sure that during the course of dispatching the
              // identity of the thread wasn't corrupted.
              final long newIdent = Binder.clearCallingIdentity();
              if (ident != newIdent) {
                  Log.wtf(TAG, "Thread identity changed from 0x"
                          + Long.toHexString(ident) + " to 0x"
                          + Long.toHexString(newIdent) + " while dispatching to "
                          + msg.target.getClass().getName() + " "
                          + msg.callback + " what=" + msg.what);
              }
              
              //--------------充值message对象参数
              msg.recycleUnchecked();
          }
      }
    

四、MessageQueue源码剖析

MessageQueue主要分析插入和取出,由下enqueueMessage插入方法看出,它名字带着Queue,但其实并不是,它实际是个单链表结构,通过native操作指针,去进行msg的读取操作。当然,这更加快捷的实施取出,删除和插入操作。

1. enqueueMessage

  • msg.markInUse();标记当前msg正在使用
  • 其中mMessages是可以理解为即将执行的Message对象
  • 将当前mMessages新传入的Msg设置触发时间对比,如果新的Msg设置时间早,则将2者位置对调,将新的排前面,与之对比的mMessages排到其后。反之,则与mMessages后一个对比时间,依次类比,插入到队列中
  • 其中,如果msg事Asynchronous同步的,那么它只能等到上一个同步msg执行完,才能被唤醒执行。
     boolean enqueueMessage(Message msg, long when) {
        ...

        synchronized (this) {
            if (mQuitting) {
                //------------->抛出一个IllegalStateException
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }
            //------------->标记当前msg正在使用
            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

2. next取出

  • 可以看出enqueueMessage和next都是同步的

  • 通过循环,把mMessages当前msg

  • 比较当前时间和Msg标记时间,如果早的话就设置一段指针查找超时时间

  • 将msg标记为使用,并取出消息返回

      Message next() {
    
          //----->当消息轮询退出时,mPtr指针找不到地址,返回空取不到对象
          final long ptr = mPtr;
          if (ptr == 0) {
              return null;
          }
          //----->同步指针查找的时间,根据超时时间计算,比如当前未到msg的时间,指针会在一段计算好的超时时间后去查询
          int pendingIdleHandlerCount = -1; // -1 only during first iteration
          int nextPollTimeoutMillis = 0;
          for (;;) {
              if (nextPollTimeoutMillis != 0) {
                  Binder.flushPendingCommands();
              }
    
              nativePollOnce(ptr, nextPollTimeoutMillis);
    
              synchronized (this) {
                  // Try to retrieve the next message.  Return if found.
                  final long now = SystemClock.uptimeMillis();
                  Message prevMsg = null;
                  Message msg = mMessages;
                      
                  //----->如果target为null,寻找下一个带“同步”标签的msg
    
                  if (msg != null && msg.target == null) {
                      // Stalled by a barrier.  Find the next asynchronous message in the queue.
                      do {
                          prevMsg = msg;
                          msg = msg.next;
                      } while (msg != null && !msg.isAsynchronous());
                  }
                  if (msg != null) {
    
                      //----->比较当前时间和Msg标记时间,如果早的话就设置一段指针查找超时时间
    
                      if (now < msg.when) {
                          // Next message is not ready.  Set a timeout to wake up when it is ready.
                          nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                      } else {
                          // Got a message.
                          mBlocked = false;
                          if (prevMsg != null) {
                              prevMsg.next = msg.next;
                          } else {
                              mMessages = msg.next;
                          }
                          msg.next = null;
                          if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                          msg.markInUse();
                          return msg;
                      }
                  } else {
                      // No more messages.
                      nextPollTimeoutMillis = -1;
                  }
    
                  // Process the quit message now that all pending messages have been handled.
                  if (mQuitting) {
                      dispose();
                      return null;
                  }
    
                  // If first time idle, then get the number of idlers to run.
                  // Idle handles only run if the queue is empty or if the first message
                  // in the queue (possibly a barrier) is due to be handled in the future.
                  if (pendingIdleHandlerCount < 0
                          && (mMessages == null || now < mMessages.when)) {
                      pendingIdleHandlerCount = mIdleHandlers.size();
                  }
                  if (pendingIdleHandlerCount <= 0) {
                      // No idle handlers to run.  Loop and wait some more.
                      mBlocked = true;
                      continue;
                  }
    
                  if (mPendingIdleHandlers == null) {
                      mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                  }
                  mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
              }
    
              // Run the idle handlers.
              // We only ever reach this code block during the first iteration.
              for (int i = 0; i < pendingIdleHandlerCount; i++) {
                  final IdleHandler idler = mPendingIdleHandlers[i];
                  mPendingIdleHandlers[i] = null; // release the reference to the handler
    
                  boolean keep = false;
                  try {
                      keep = idler.queueIdle();
                  } catch (Throwable t) {
                      Log.wtf(TAG, "IdleHandler threw exception", t);
                  }
    
                  if (!keep) {
                      synchronized (this) {
                          mIdleHandlers.remove(idler);
                      }
                  }
              }
    
              // Reset the idle handler count to 0 so we do not run them again.
              pendingIdleHandlerCount = 0;
    
              // While calling an idle handler, a new message could have been delivered
              // so go back and look again for a pending message without waiting.
              nextPollTimeoutMillis = 0;
          }
      }
    

3. quit操作

  • 前面标记是否能安全退出,否则报错
  • 退出后唤醒指针,接触msg的锁
     void quit(boolean safe) {
            if (!mQuitAllowed) {
                throw new IllegalStateException("Main thread not allowed to quit.");
            }
    
            synchronized (this) {
                if (mQuitting) {
                    return;
                }
                mQuitting = true;
    
                if (safe) {
                    removeAllFutureMessagesLocked();
                } else {
                    removeAllMessagesLocked();
                }
    
                // We can assume mPtr != 0 because mQuitting was previously false.
                nativeWake(mPtr);
            }
        }

五、Message源码剖析

Message主要是一个Parcelable序列号对象,封装了不分信息和操作,它构造了一个对象池,这也是为什么我们一直发送msg,不会内存爆炸的原因,来看看实现

1. obtain()

  • 维持一个大小为50的同步线程池
  • 这里可以看出Message是个链表结构,obtain将sPool取出return Message,并对象池下一个msg标记为sPool
    private static final int MAX_POOL_SIZE = 50;
    
    ...

    public static Message obtain() {
        synchronized (sPoolSync) {
            if (sPool != null) {
                Message m = sPool;
                sPool = m.next;
                m.next = null;
                m.flags = 0; // clear in-use flag
                sPoolSize--;
                return m;
            }
        }
        return new Message();
    }

2.recycleUnchecked 回收消息

  • 回收初始化当前msg
  • 如果当前对象池大小小于MAX_POOL_SIZE,则将初始化后的msg放到表头sPool,sPoolSize++。
  • 由此可以看出,如果每次new新的Message传入Handler,必然增加内存消耗,通过obtain服用才是正确的做法
    /**
     * Recycles a Message that may be in-use.
     * Used internally by the MessageQueue and Looper when disposing of queued Messages.
     */
    void recycleUnchecked() {
        // Mark the message as in use while it remains in the recycled object pool.
        // Clear out all other details.
        flags = FLAG_IN_USE;
        what = 0;
        arg1 = 0;
        arg2 = 0;
        obj = null;
        replyTo = null;
        sendingUid = -1;
        when = 0;
        target = null;
        callback = null;
        data = null;

        synchronized (sPoolSync) {
            if (sPoolSize < MAX_POOL_SIZE) {
                next = sPool;
                sPool = this;
                sPoolSize++;
            }
        }
    }

3. Message标签:是否使用,同步标签

public void setAsynchronous(boolean async) {
    if (async) {
        flags |= FLAG_ASYNCHRONOUS;
    } else {
        flags &= ~FLAG_ASYNCHRONOUS;
    }
}

/*package*/ boolean isInUse() {
    return ((flags & FLAG_IN_USE) == FLAG_IN_USE);
}

/*package*/ void markInUse() {
    flags |= FLAG_IN_USE;
} 

六、总结

废了小半天功夫,整理了对Handler源码的阅读总结,虽然东西很多也很繁琐,不过如果认真去看,是不是发现越深入就越有趣,也越发发现Android源码的严谨性。平常至少简单一用,只要深入了解才能更好地去使用它理解它,比如Message对象池的应用,这不就是享元模式吗,希望大家都能有所体悟。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 158,736评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,167评论 1 291
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,442评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,902评论 0 204
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,302评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,573评论 1 216
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,847评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,562评论 0 197
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,260评论 1 241
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,531评论 2 245
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,021评论 1 258
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,367评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,016评论 3 235
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,068评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,827评论 0 194
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,610评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,514评论 2 269