bitcoin:压缩公钥与未压缩公钥

0.127字数 300阅读 696

btc address: 1FmWXNJT3jVKaHBQs2gAs6PLGVWx1zPPHf
eth address: 0xd91c747b4a76B8013Aa336Cbc52FD95a7a9BD3D9

前文介绍

生成bitcoin地址 文章中得到了公钥 04d061e9c5891f579fd548cfd22ff29f5c642714cc7e7a9215f0071ef5a5723f691757b28e31be71f09f24673eed52348e58d53bcfd26f4d96ec6bf1489eab429d
公钥其实是secp256k1椭圆曲线的一个坐标点,即(x,y)形式,用16进制表示是
(0xd061e9c5891f579fd548cfd22ff29f5c642714cc7e7a9215f0071ef5a5723f69,
0x1757b28e31be71f09f24673eed52348e58d53bcfd26f4d96ec6bf1489eab429d)

而且(x,y) 必然符合:

# python code
Pcurve = 2**256 - 2**32 - 2**9 - 2**8 - 2**7 - 2**6 - 2**4 -1 #有限域
x = 0xd061e9c5891f579fd548cfd22ff29f5c642714cc7e7a9215f0071ef5a5723f69
y = 0x1757b28e31be71f09f24673eed52348e58d53bcfd26f4d96ec6bf1489eab429d

x_res = x**3+7
y_res = y**2

(x_res%Pcurve) == (y_res%Pcurve)

为啥符合呢

比特币secp256k1椭圆曲线公式是 y^2=x^3+7
椭圆曲线加密算法 定义在有限域 \mathbb{F}_p
假设 y^2=x^3+7\mathbb{F}_{23}

x^3+7 \ mod \ 23 就是 ((x**3)+7) % 23

y^2 \ mod \ 23 就是 (y**2)%23

((x**3)+7) % 23 == (y**2)%23必然成立,不成立就不符合椭圆曲线加密的定义了。

secp256k1的有限域是Pcurve,Pcurve是个质数。

未压缩公钥

前缀04+x坐标+y坐标
04d061e9c5891f579fd548cfd22ff29f5c642714cc7e7a9215f0071ef5a5723f691757b28e31be71f09f24673eed52348e58d53bcfd26f4d96ec6bf1489eab429d

压缩公钥

前缀03+x(如果y是奇数),前缀02+x(如果y是偶数)

0x1757......429d从最后一位 0xd来看,这个数是奇数,所以压缩公钥是03d061e9c5891f579fd548cfd22ff29f5c642714cc7e7a9215f0071ef5a5723f69

现在一般都使用压缩公钥, 压缩/未压缩公钥生成的地址确实会不一样,
未压缩公钥早已成了非主流。

比特币地址

以下是同一个私钥,不同类型的公钥生成的不同地址。
代码见 gen_addr

#############未压缩公钥生成的地址#############
14xfJr1DArtYR156XBs28FoYk6sQqirT2s
35egEPVeimCvWAmXeHXcYtAUtdA8RtsNUY
mjUcbu6BytKoC7YiEkqPxB1sc6U7nnjFse

#############压缩公钥生成的地址#############
1ASfqPzBTfPSBA9DWdHYYNk4qM5NoGNtzL
3B8gkwUd1ZhpGKqedix8y16zysN6QWqQxS
mpxd8T5AGgpgxGcqECFvNHxPhLg5of8Sh3