理解L1,L2 范数在机器学习中应用

理解L1,L2 范数

L1,L2 范数即 L1-normL2-norm,自然,有L1、L2便也有L0、L3等等。因为在机器学习领域,L1 和 L2 范数应用比较多,比如作为正则项在回归中的使用 Lasso Regression(L1) 和 Ridge Regression(L2)。

因此,此两者的辨析也总被提及,或是考到。不过在说明两者定义和区别前,先来谈谈什么是范数(Norm)吧。

什么是范数?

在线性代数以及一些数学领域中,norm 的定义是

a function that assigns a strictly positive length or size to each vector in a vector space, except for the zero vector. ——Wikipedia

简单点说,一个向量的 norm 就是将该向量投影到 [0, ​) 范围内的值,其中 0 值只有零向量的 norm 取到。看到这样的一个范围,相信大家就能想到其与现实中距离的类比,于是在机器学习中 norm 也就总被拿来表示距离关系:根据怎样怎样的范数,这两个向量有多远。

上面这个怎样怎样也就是范数种类,通常我们称​为p-norm,严格定义是:

其中当 p 取 1 时被称为 1-norm,也就是提到的 L1-norm,同理 L2-norm 可得。

L1 和 L2 范数的定义

根据上述公式 L1-norm 和 L2-norm 的定义也就自然而然得到了。

先将 p=1 代入公式,就有了 L1-norm 的定义:

然后代入 p=2,L2-norm 也有了:

L2 展开就是熟悉的欧几里得范数:

题外话,其中 L1-norm 又叫做 taxicab-norm 或者 Manhattan-norm,可能最早提出的大神直接用在曼哈顿区坐出租车来做比喻吧。下图中绿线是两个黑点的 L2 距离,而其他几根就是 taxicab 也就是 L1 距离,确实很像我们平时用地图时走的路线了。

L1 和 L2 范数在机器学习上最主要的应用大概分下面两类

  • 作为损失函数使用

  • 作为正则项使用也即所谓 L1-regularizationL2-regularization

我们可以担当损失函数

先来看个回归问题

我们需要做的是,获得一条线,让数据点到线上的总距离(也就是error)最小。

还记得之前在范数介绍中提到的用来表示距离吗,于是也可以用能表示距离的 L1-norm 和 L2-norm 来作为损失函数了。

首先是 L1-norm 损失函数,又被称为 least absolute deviation (LAD,最小绝对偏差)

如果我们最小化上面的损失函数,其实就是在最小化预测值 ​ 和目标值 ​ 的绝对值。

之后是大家最熟悉的 L2-norm 损失函数,又有大名最小二乘误差 (least squares error, LSE):

这个便不多解释了。

那么问题来了,这里不谈挖掘机,为什么大家一般都用 L2 损失函数,却不用 L1 呢?

这个就说来话长了,如果你问一个学习过微积分的同学,如何求一个方程的最小值,他/她大概会想当然的说:“求导,置零,解方程。” 号称微积分届的农夫三拳。

但如果给出一个绝对值的方程,突然就会发现农夫三拳不管用了,求最小值就有点麻烦了。主要是因为绝对值的倒数是不连续的。

同样的对于 L1 和 L2 损失函数的选择,也会碰到同样的问题,所以最后大家一般用 L2 损失函数而不用 L1 损失函数的原因就是:

因为计算方便!

可以直接求导获得取最小值时各个参数的取值。

此外还有一点,用 L2 一定只有一条最好的预测线,L1 则因为其性质可能存在多个最优解。(更多关于L1 L2 损失函数参考索引5)

当然 L1 损失函数难道就没有什么好处了吗,也是有的,那就是鲁棒性 (Robust) 更强,对异常值更不敏感

我们还能担当正则项

因为机器学习中众所周知的过拟合问题,所以用正则化防止过拟合,成了机器学习中一个非常重要的技巧。

但数学上来讲,其实就是在损失函数中加个正则项(Regularization Term),来防止参数拟合得过好。

L1-regularization 和 L2-regularization 便都是我们常用的正则项,两者公式的例子分别如下

这两个正则项最主要的不同,包括两点:

  • 如上面提到的,L2 计算起来更方便,而 L1 在特别是非稀疏向量上的计算效率就很低;

  • 还有就是 L1 最重要的一个特点,输出稀疏,会把不重要的特征直接置零,而 L2 则不会;

  • 最后,如之前多次提过,L2 有唯一解,而 L1 不是。

这里关于第二条输出稀疏我想再进行一些详细讲解,因为 L1 天然的输出稀疏性,把不重要的特征都置为 0,所以它也是一个天然的特征选择器

可是为什么 L1 会有这样的性质呢,而 L2 没有呢?这里用个直观的例子来讲解。

来一步一步看吧,首先获知用梯度下降法来优化时,需要求导获得梯度,然后用以更新参数。

于是分别先对 L1 正则项和 L2 正则项来进行求导,可得。

之后将 L1 和 L2 和它们的导数画在图上

于是会发现,在梯度更新时,不管 L1 的大小是多少(只要不是0)梯度都是1或者-1,所以每次更新时,它都是稳步向0前进。

而看 L2 的话,就会发现它的梯度会越靠近0,就变得越小。

也就是说加了 L1 正则的话基本上经过一定步数后很可能变为0,而 L2 几乎不可能,因为在值小的时候其梯度也会变小。于是也就造成了 L1 输出稀疏的特性。

Reference

  1. Differences between L1 and L2 as Loss Function and Regularization

  2. Why L1 norm for sparse models

  3. L1 Norms versus L2 Norms

  4. Norm (mathematics)-Wiki

  5. Why we use “least squares” regression instead of “least absolute deviations” regression

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 158,736评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,167评论 1 291
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,442评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,902评论 0 204
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,302评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,573评论 1 216
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,847评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,562评论 0 197
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,260评论 1 241
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,531评论 2 245
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,021评论 1 258
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,367评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,016评论 3 235
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,068评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,827评论 0 194
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,610评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,514评论 2 269

推荐阅读更多精彩内容