Linux进程间通信

Linux进程间通信的概念

linux下进程间通信的几种主要手段简介:

  1. 管道(Pipe)及有名管道(named pipe):管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信;
  2. 信号(Signal):信号是比较复杂的通信方式,用于通知接受进程有某种事件发生,除了用于进程间通信外,进程还可以发送信号给进程本身;linux除了支持Unix早期信号语义函数sigal外,还支持语义符合Posix.1标准的信号函数sigaction(实际上,该函数是基于BSD的,BSD为了实现可靠信号机制,又能够统一对外接口,用sigaction函数重新实现了signal函数);
  3. 报文(Message)队列(消息队列):消息队列是消息的链接表,包括Posix消息队列system V消息队列。有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息。消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺点。
  4. 共享内存:使得多个进程可以访问同一块内存空间,是最快的可用IPC形式。是针对其他通信机制运行效率较低而设计的。往往与其它通信机制,如信号量结合使用,来达到进程间的同步及互斥。
  5. 信号量(semaphore):主要作为进程间以及同一进程不同线程之间的同步手段。
  6. 套接口(Socket):更为一般的进程间通信机制,可用于不同机器之间的进程间通信。起初是由Unix系统的BSD分支开发出来的,但现在一般可以移植到其它类Unix系统上:Linux和System V的变种都支持套接字。

管道

  • 管道是半双工的,数据只能向一个方向流动;需要双方通信时,需要建立起两个管道;
  • 只能用于父子进程或者兄弟进程之间(具有亲缘关系的进程);
  • 单独构成一种独立的文件系统:管道对于管道两端的进程而言,就是一个文件,但它不是普通的文件,它不属于某种文件系统,而是自立门户,单独构成一种文件系统,并且只存在与内存中。
  • 数据的读出和写入:一个进程向管道中写的内容被管道另一端的进程读出。写入的内容每次都添加在管道缓冲区的末尾,并且每次都是从缓冲区的头部读出数据。

管道的创建:

int pipe(int fd[2])

一般文件的I/O函数都可以用于管道,如close、read、write等等。

管道应用实例

实例1:用于shell

管道可用于输入输出重定向,它将一个命令的输出直接定向到另一个命令的输入。比如,当在某个shell程序(Bourne shell或C shell等)键入who│wc -l后,相应shell程序将创建who以及wc两个进程和这两个进程间的管道。

实例二:用于具有亲缘关系的进程间通信

管道的局限性

管道的主要局限性正体现在它的特点上:

  • 只支持单向数据流;
  • 只能用于具有亲缘关系的进程之间;
  • 没有名字;
  • 管道的缓冲区是有限的(管道制存在于内存中,在管道创建时,为缓冲区分配一个页面大小);
  • 管道所传送的是无格式字节流,这就要求管道的读出方和写入方必须事先约定好数据的格式,比如多少字节算作一个消息(或命令、或记录)等等;

有名管道(named pipe或FIFO)

有名管道的创建

int mkfifo(const char * pathname, mode_t mode)

小结:

管道常用于两个方面:(1)在shell中时常会用到管道(作为输入输入的重定向),在这种应用方式下,管道的创建对于用户来说是透明的;(2)用于具有亲缘关系的进程间通信,用户自己创建管道,并完成读写操作。

FIFO可以说是管道的推广,克服了管道无名字的限制,使得无亲缘关系的进程同样可以采用先进先出的通信机制进行通信。

管道和FIFO的数据是字节流,应用程序之间必须事先确定特定的传输"协议",采用传播具有特定意义的消息。

要灵活应用管道及FIFO,理解它们的读写规则是关键。

信号及信号来源

信号生命周期

1. 信号本质

信号是进程间通信机制中唯一的异步通信机制,可以看作是异步通知,通知接收信号的进程有哪些事情发生了。信号机制经过POSIX实时扩展后,功能更加强大,除了基本通知功能外,还可以传递附加信息。

2. 信号来源

信号事件的发生有两个来源:硬件来源(比如我们按下了键盘或者其它硬件故障);软件来源,最常用发送信号的系统函数是kill, raise, alarm和setitimer以及sigqueue函数,软件来源还包括一些非法运算等操作。

3. 信号的种类

可以从两个不同的分类角度对信号进行分类:(1)可靠性方面:可靠信号与不可靠信号;(2)与时间的关系上:实时信号与非实时信号。

(1) 可靠信号与不可靠信号

不可靠信号 :Linux下的不可靠信号问题主要指的是信号可能丢失。

可靠信号 :信号值位于SIGRTMIN和SIGRTMAX之间的信号都是可靠信号,可靠信号克服了信号可能丢失的问题。Linux在支持新版本的信号安装函数sigation()以及信号发送函数sigqueue()的同时,仍然支持早期的signal()信号安装函数,支持信号发送函数kill()。

对于目前linux的两个信号安装函数:signal()及sigaction()来说,它们都不能把SIGRTMIN以前的信号变成可靠信号(都不支持排队,仍有可能丢失,仍然是不可靠信号),而且对SIGRTMIN以后的信号都支持排队。这两个函数的最大区别在于,经过sigaction安装的信号都能传递信息给信号处理函数(对所有信号这一点都成立),而经过signal安装的信号却不能向信号处理函数传递信息。对于信号发送函数来说也是一样的。

(2) 实时信号与非实时信号

前32种信号已经有了预定义值,每个信号有了确定的用途及含义,并且每种信号都有各自的缺省动作。如按键盘的CTRL ^C时,会产生SIGINT信号,对该信号的默认反应就是进程终止。后32个信号表示实时信号,等同于前面阐述的可靠信号。这保证了发送的多个实时信号都被接收。实时信号是POSIX标准的一部分,可用于应用进程。非实时信号都不支持排队,都是不可靠信号;实时信号都支持排队,都是可靠信号。

4. 进程对信号的响应

  1. 忽略信号,即对信号不做任何处理,其中,有两个信号不能忽略:SIGKILL及SIGSTOP;
  2. 捕捉信号。定义信号处理函数,当信号发生时,执行相应的处理函数;
  3. 执行缺省操作,Linux对每种信号都规定了默认操作,详细情况请参考[2]以及其它资料。注意,进程对实时信号的缺省反应是进程终止。

5. 信号的发送

发送信号的主要函数有:kill()、raise()、 sigqueue()、alarm()、setitimer()以及abort()。

  1. kill() int kill(pid_t pid, int signo)

    参数pid的值 信号的接收进程
    pid>0 进程ID为pid的进程
    pid=0 同一个进程组的进程
    pid<0 pid!=-1 进程组ID为 -pid的所有进程
    pid=-1 除发送进程自身外,所有进程ID大于1的进程

    Sinno是信号值,当为0时(即空信号),实际不发送任何信号,但照常进行错误检查,因此,可用于检查目标进程是否存在,以及当前进程是否具有向目标发送信号的权限(root权限的进程可以向任何进程发送信号,非root权限的进程只能向属于同一个session或者同一个用户的进程发送信号)。

    Kill()最常用于pid>0时的信号发送,调用成功返回 0; 否则,返回 -1。

  2. raise() int raise(int signo)

    向进程本身发送信号,参数为即将发送的信号值。调用成功返回 0;否则,返回 -1。

  3. sigqueue() int sigqueue(pid_t pid, int sig, const union sigval val)

调用成功返回 0;否则,返回 -1。

sigqueue()是比较新的发送信号系统调用,主要是针对实时信号提出的(当然也支持前32种),支持信号带有参数,与函数sigaction()配合使用。

sigqueue的第一个参数是指定接收信号的进程ID,第二个参数确定即将发送的信号,第三个参数是一个联合数据结构union sigval,指定了信号传递的参数,即通常所说的4字节值。

typedef union sigval {
    int  sival_int;
    void *sival_ptr;
}sigval_t;

sigqueue()比kill()传递了更多的附加信息,但sigqueue()只能向一个进程发送信号。sigqueue()比kill()传递了更多的附加信息,但sigqueue()只能向一个进程发送信号。

  1. alarm() unsigned int alarm(unsigned int seconds)

    专门为SIGALRM信号而设,在指定的时间seconds秒后,将向进程本身发送SIGALRM信号,又称为闹钟时间。进程调用alarm后,任何以前的alarm()调用都将无效。如果参数seconds为零,那么进程内将不再包含任何闹钟时间。
    返回值,如果调用alarm()前,进程中已经设置了闹钟时间,则返回上一个闹钟时间的剩余时间,否则返回0。

  2. setitimer() int setitimer(int which, const struct itimerval *value, struct itimerval *ovalue));

    setitimer()比alarm功能强大,支持3种类型的定时器:

    • ITIMER_REAL: 设定绝对时间;经过指定的时间后,内核将发送SIGALRM信号给本进程;
    • ITIMER_VIRTUAL 设定程序执行时间;经过指定的时间后,内核将发送SIGVTALRM信号给本进程;
    • ITIMER_PROF 设定进程执行以及内核因本进程而消耗的时间和,经过指定的时间后,内核将发送ITIMER_VIRTUAL信号给本进程;

    Setitimer()调用成功返回0,否则返回-1。

  3. abort() void abort(void);

    向进程发送SIGABORT信号,默认情况下进程会异常退出,当然可定义自己的信号处理函数。即使SIGABORT被进程设置为阻塞信号,调用abort()后,SIGABORT仍然能被进程接收。该函数无返回值。

6. 信号的安装(设置信号关联动作)

inux主要有两个函数实现信号的安装:signal()sigaction()。其中signal()在可靠信号系统调用的基础上实现, 是库函数。它只有两个参数,不支持信号传递信息,主要是用于前32种非实时信号的安装;而sigaction()是较新的函数(由两个系统调用实现:sys_signal以及sys_rt_sigaction),有三个参数,支持信号传递信息,主要用来与 sigqueue() 系统调用配合使用,当然,sigaction()同样支持非实时信号的安装。sigaction()优于signal()主要体现在支持信号带有参数。

  1. signal() void (*signal(int signum, void (*handler))(int)))(int);

    第一个参数指定信号的值,第二个参数指定针对前面信号值的处理,可以忽略该信号(参数设为SIG_IGN);可以采用系统默认方式处理信号(参数设为SIG_DFL);也可以自己实现处理方式(参数指定一个函数地址)。
    如果signal()调用成功,返回最后一次为安装信号signum而调用signal()时的handler值;失败则返回SIG_ERR。

  2. sigaction() int sigaction(int signum,const struct sigaction *act,struct sigaction *oldact));

    sigaction函数用于改变进程接收到特定信号后的行为。该函数的第一个参数为信号的值,可以为除SIGKILL及SIGSTOP外的任何一个特定有效的信号(为这两个信号定义自己的处理函数,将导致信号安装错误)。第二个参数是指向结构sigaction的一个实例的指针,在结构sigaction的实例中,指定了对特定信号的处理,可以为空,进程会以缺省方式对信号处理;第三个参数oldact指向的对象用来保存原来对相应信号的处理,可指定oldact为NULL。如果把第二、第三个参数都设为NULL,那么该函数可用于检查信号的有效性。

    第二个参数最为重要,其中包含了对指定信号的处理、信号所传递的信息、信号处理函数执行过程中应屏蔽掉哪些函数等等。

消息队列

消息队列就是一个消息的链表。可以把消息看作一个记录,具有特定的格式以及特定的优先级。对消息队列有写权限的进程可以向中按照一定的规则添加新消息;对消息队列有读权限的进程则可以从消息队列中读走消息。消息队列是随内核持续的

打开或创建消息队列

消息队列的内核持续性要求每个消息队列都在系统范围内对应唯一的键值,所以,要获得一个消息队列的描述字,只需提供该消息队列的键值即可;

  1. 文件名到键值 key_t ftok (char*pathname, char proj);它返回与路径pathname相对应的一个键值。
  2. int msgget(key_t key, int msgflg)参数key是一个键值,由ftok获得;msgflg参数是一些标志位。该调用返回与健值key相对应的消息队列描述字。

读写操作

struct msgbuf{
long mtype;
char mtext[1];
};
  1. int msgrcv(int msqid, struct msgbuf \*msgp, int msgsz, long msgtyp, int msgflg);该系统调用从msgid代表的消息队列中读取一个消息,并把消息存储在msgp指向的msgbuf结构中。

  2. int msgsnd(int msqid, struct msgbuf \*msgp, int msgsz, int msgflg);向msgid代表的消息队列发送一个消息,即将发送的消息存储在msgp指向的msgbuf结构中,消息的大小由msgze指定。

  3. int msgctl(int msqid, int cmd, struct msqid_ds *buf);
    该系统调用对由msqid标识的消息队列执行cmd操作,共有三种cmd操作:IPC_STAT、IPC_SET 、IPC_RMID。

    IPC_STAT:该命令用来获取消息队列信息,返回的信息存贮在buf指向的msqid结构中;

    IPC_SET:该命令用来设置消息队列的属性,要设置的属性存储在buf指向的msqid结构中;可设置属性包括:msg_perm.uid、msg_perm.gid、msg_perm.mode以及msg_qbytes,同时,也影响msg_ctime成员。

    IPC_RMID:删除msqid标识的消息队列;

    调用返回:成功返回0,否则返回-1。

小结

消息队列与管道以及有名管道相比,具有更大的灵活性,首先,它提供有格式字节流,有利于减少开发人员的工作量;其次,消息具有类型,在实际应用中,可作为优先级使用。这两点是管道以及有名管道所不能比的。同样,消息队列可以在几个进程间复用,而不管这几个进程是否具有亲缘关系,这一点与有名管道很相似;但消息队列是随内核持续的,与有名管道(随进程持续)相比,生命力更强,应用空间更大。

信号量

信号灯与其他进程间通信方式不大相同,它主要提供对进程间共享资源访问控制机制。相当于内存中的标志,进程可以根据它判定是否能够访问某些共享资源,同时,进程也可以修改该标志。除了用于访问控制外,还可用于进程同步。信号灯有以下两种类型:

  • 二值信号灯:最简单的信号灯形式,信号灯的值只能取0或1,类似于互斥锁。
    注:二值信号灯能够实现互斥锁的功能,但两者的关注内容不同。信号灯强调共享资源,只要共享资源可用,其他进程同样可以修改信号灯的值;互斥锁更强调进程,占用资源的进程使用完资源后,必须由进程本身来解锁。
  • 计算信号灯:信号灯的值可以取任意非负值(当然受内核本身的约束)。

1. 打开或创建信号量

  1. key_t ftok (char*pathname, char proj); 它返回与路径pathname相对应的一个键值。
  2. int semget(key_t key, int nsems, int semflg) 参数key是一个键值,由ftok获得,唯一标识一个信号灯集,用法与msgget()中的key相同;参数nsems指定打开或者新创建的信号灯集中将包含信号灯的数目;semflg参数是一些标志位。该调用返回与健值key相对应的信号灯集描述字。

2. 信号灯量操作

int semop(int semid, struct sembuf *sops, unsigned nsops); semid是信号灯集ID,sops指向数组的每一个sembuf结构都刻画一个在特定信号灯上的操作。

int semctl(int semid,int semnum,int cmd,union semun arg)
该系统调用实现对信号灯的各种控制操作,参数semid指定信号灯集,参数cmd指定具体的操作类型;参数semnum指定对哪个信号灯操作,只对几个特殊的cmd操作有意义;arg用于设置或返回信号灯信息。

共享内存

进程间需要共享的数据被放在一个叫做IPC共享内存区域的地方,所有需要访问该共享区域的进程都要把该共享区域映射到本进程的地址空间中去。系统V共享内存通过shmget获得或创建一个IPC共享内存区域,并返回相应的标识符。内核在保证shmget获得或创建一个共享内存区,初始化该共享内存区相应的shmid_kernel结构注同时,还将在特殊文件系统shm中,创建并打开一个同名文件,并在内存中建立起该文件的相应dentry及inode结构,新打开的文件不属于任何一个进程(任何进程都可以访问该共享内存区)。所有这一切都是系统调用shmget完成的。

shmget()用来获得共享内存区域的ID,如果不存在指定的共享区域就创建相应的区域。shmat()把共享内存区域映射到调用进程的地址空间中去,这样,进程就可以方便地对共享区域进行访问操作。shmdt()调用用来解除进程对共享内存区域的映射。shmctl实现对共享内存区域的控制操作。这里我们不对这些系统调用作具体的介绍,读者可参考相应的手册页面,后面的范例中将给出它们的调用方法。

注:shmget的内部实现包含了许多重要的系统V共享内存机制;shmat在把共享内存区域映射到进程空间时,并不真正改变进程的页表。当进程第一次访问内存映射区域访问时,会因为没有物理页表的分配而导致一个缺页异常,然后内核再根据相应的存储管理机制为共享内存映射区域分配相应的页表。

套接字

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 157,298评论 4 360
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 66,701评论 1 290
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 107,078评论 0 237
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,687评论 0 202
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,018评论 3 286
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,410评论 1 211
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,729评论 2 310
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,412评论 0 194
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,124评论 1 239
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,379评论 2 242
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 31,903评论 1 257
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,268评论 2 251
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 32,894评论 3 233
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,014评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,770评论 0 192
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,435评论 2 269
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,312评论 2 260

推荐阅读更多精彩内容

  • 进程间通信 进程间通信即IPC(InerProcess Communication)Unix ipc 已经是而且继...
    千里山南阅读 431评论 0 2
  • 进程间通信(IPC - InterProcess Communication) 通信的方式有很多: 文件, 管道,...
    wulegekong阅读 812评论 2 3
  • 当你越来越漂亮时,自然有人关注你。当你越来越有能力时,自然会有人看得起你。改变自己,你才有自信,梦想才会慢慢的实现...
    _小逗眼_阅读 334评论 0 2
  • 来到简书两个月 认识许多好朋友 是简书这个平台 也是我们的缘分 每天分享一些事 时而烦恼时而喜 时而快乐时而忧 这...
    路上过客阅读 180评论 24 14
  • 节后的清晨充斥着各种迷茫 总有一个箭头指向你要去的方向 叹息 只会加重对身体的压力 不如 加快脚步 追赶太阳
    孤芳香草阅读 186评论 0 0