Jupyter Notebook的秘诀,技巧和快捷键

原文链接
翻译版链接

Jupyter Notebook

Jupyther notebook ,也就是一般说的 Ipython notebook,是一个可以把代码、图像、注释、公式和作图集于一处,从而实现可读性分析的一种灵活的工具。
Jupyter延伸性很好,支持多种编程语言,可以很轻松地安装在个人电脑或者任何服务器上 —— 只要有ssh或者http接入就可以。最棒的一点是,它完全免费。

Jupyter 界面

默认情况下,Jupyter Notebook 使用Python内核,这就是为什么它原名 IPython Notebook。Jupyter notebook是Jupyter项目的产物——Jupyter这个名字是它要服务的三种语言的缩写:Julia,Python和R,这个名字与“木星(jupiter)”谐音。

1、快捷键

Jupyter在顶部菜单提供了一个快捷键列表:Help > Keyboard Shortcuts 。每次更新Jupyter的时候,一定要看看这个列表,因为不断地有新的快捷键加进来。另外一个方法是使用Cmd + Shift + P ( Linux 和 Windows下 Ctrl + Shift + P 亦可)调出命令面板。这个对话框可以让你通过名称来运行任何命令——当你不知道某个操作的快捷键,或者那个操作没有快捷键的时候尤其有用。这个功能与苹果电脑上的Spotlight搜索很像,一旦开始使用,你会欲罢不能。

几个快捷键:

  • Esc + F 在代码中查找、替换,忽略输出。
  • Esc + O 在cell和输出结果间切换。
  • 选择多个cell:
    • Shift + J 或 Shift + Down 选择下一个cell。
    • Shift + K 或 Shift + Up 选择上一个cell。
    • 一旦选定cell,可以批量删除/拷贝/剪切/粘贴/运行。当你需要移动notebook的一部分时这个很有用。
  • Shift + M 合并cell.

2、变量的完美显示

有一点已经众所周知。把变量名称或没有定义输出结果的语句放在cell的最后一行,无需print语句,Jupyter也会显示变量值。当使用Pandas DataFrames时这一点尤其有用,因为输出结果为整齐的表格。
鲜为人知的是,你可以通过修改内核选项ast_note_interactivity,使得Jupyter对独占一行的所有变量或者语句都自动显示,这样你就可以马上看到多个语句的运行结果了。

In [1]: from IPython.core.interactiveshell import InteractiveShell
        InteractiveShell.ast_node_interactivity = "all"
In [2]: from pydataset import data
        quakes = data('quakes')
        quakes.head()
        quakes.tail()
Out[2]:
        lat long    depth   mag stations
        1   -20.42  181.62  562 4.8 41
        2   -20.62  181.03  650 4.2 15
        3   -26.00  184.10  42  5.4 43
        4   -17.97  181.66  626 4.1 19
        5   -20.42  181.96  649 4.0 11
Out[2]:
        lat  long    depth   mag stations
        996  -25.93  179.54  470 4.4 22
        997  -12.28  167.06  248 4.7 35
        998  -20.13  184.20  244 4.5 34
        999  -17.40  187.80  40  4.5 14
        1000 -21.59  170.56  165 6.0 119

如果你想在各种情形下(Notebook和Console)Jupyter都同样处理,用下面的几行简单的命令创建文件~/.ipython/profile_default/ipython_config.py即可实现:

c = get_config()
# Run all nodes interactively
c.InteractiveShell.ast_node_interactivity = "all"

3、轻松链接到文档

在Help 菜单下,你可以找到常见库的在线文档链接,包括Numpy,Pandas,Scipy和Matplotlib等。
另外,在库、方法或变量的前面打上?,即可打开相关语法的帮助文档。

In [3]: ?str.replace()
    Docstring:
    S.replace(old, new[, count]) -> str

    Return a copy of S with all occurrences of substring
    old replaced by new.  If the optional argument count is
    given, only the first count occurrences are replaced.
    Type:      method_descriptor

4、 在notebook里作图

在notebook里作图,有多个选择:

  • matplotlib (事实标准),可通过%matplotlib inline 激活,详细链接
  • %matplotlib notebook 提供交互性操作,但可能会有点慢,因为响应是在服务器端完成的。
  • mpld3 提供matplotlib代码的替代性呈现(通过d3),虽然不完整,但很好。
  • bokeh 生成可交互图像的更好选择。
  • plot.ly 可以生成非常好的图,可惜是付费服务。

5、 Jupyter Magic命令

上文提到的%matplotlib inline 是Jupyter Magic命令之一。

# This will list all magic commands
In [53]: %lsmagic
Out[53]:
Available line magics:
%alias  %alias_magic  %autocall  %automagic  %autosave  %bookmark  %cat  %cd  %clear  %colors  %config  %connect_info  %cp  %debug  %dhist  %dirs  %doctest_mode  %ed  %edit  %env  %gui  %hist  %history  %killbgscripts  %ldir  %less  %lf  %lk  %ll  %load  %load_ext  %loadpy  %logoff  %logon  %logstart  %logstate  %logstop  %ls  %lsmagic  %lx  %macro  %magic  %man  %matplotlib  %mkdir  %more  %mv  %notebook  %page  %pastebin  %pdb  %pdef  %pdoc  %pfile  %pinfo  %pinfo2  %popd  %pprint  %precision  %profile  %prun  %psearch  %psource  %pushd  %pwd  %pycat  %pylab  %qtconsole  %quickref  %recall  %rehashx  %reload_ext  %rep  %rerun  %reset  %reset_selective  %rm  %rmdir  %run  %save  %sc  %set_env  %store  %sx  %system  %tb  %time  %timeit  %unalias  %unload_ext  %who  %who_ls  %whos  %xdel  %xmode

Available cell magics:
%%!  %%HTML  %%SVG  %%bash  %%capture  %%debug  %%file  %%html  %%javascript  %%js  %%latex  %%perl  %%prun  %%pypy  %%python  %%python2  %%python3  %%ruby  %%script  %%sh  %%svg  %%sx  %%system  %%time  %%timeit  %%writefile

Automagic is ON, % prefix IS NOT needed for line magics.

推荐阅读Jupyter magic命令的相关文档,它一定会对你很有帮助。

6、 Jupyter Magic-%env:设置环境变量

不必重启jupyter服务器进程,也可以管理notebook的环境变量。有的库(比如theano)使用环境变量来控制其行为,%env是最方便的途径。

In [55]: # Running %env without any arguments
         # lists all environment variables 
         # The line below sets the environment 
         # variable OMP_NUM_THREADS %env OMP_NUM_THREADS=4
env: OMP_NUM_THREADS=4

7、Jupyter Magic - %run: 运行python代码

%run 可以运行.py格式的python代码——这是众所周知的。不那么为人知晓的事实是它也可以运行其它的jupyter notebook文件,这一点很有用。
注意:使用%run 与导入一个python模块是不同的。

In [56]: # this will execute and show the output from 
         # all code cells of the specified notebook 
         %run ./two-histograms.ipynb

8、Jupyter Magic -%load:从外部脚本中插入代码

该操作用外部脚本替换当前cell。可以使用你的电脑中的一个文件作为来源,也可以使用URL。

In [ ]: # Before Running
         %load ./hello_world.py
In [61]: 
        # After Running 
        # %load ./hello_world.py 
        if __name__ == "__main__": 
            print("Hello World!")
Hello World!

9、Jupyter Magic - %store: 在notebook文件之间传递变量

%store 命令可以在两个notebook文件之间传递

In [62]: data = 'this is the string I want to pass to different notebook' 
         %store data 
         del data  # This has deleted the variable
Stored 'data' (str)

现在,在一个新的notebook文档里……

In [1]: %store -r data 
        print(data)
this is the string I want to pass to different notebook

10、Jupyter Magic - %who: 列出所有的全局变量

不加任何参数, %who 命令可以列出所有的全局变量。加上参数 str 将只列出字符串型的全局变量。
In [1]: one = "for the money" two = "for the show" three = "to get ready now go cat go" %who str

one three two

11、Jupyter Magic – 计时

有两种用于计时的jupyter magic命令: %%time 和 %timeit.当你有一些很耗时的代码,想要查清楚问题出在哪时,这两个命令非常给力。 仔细体会下我的描述哦。 %%time 会告诉你cell内代码的单次运行时间信息。

In [4]: %%time 
        import time 
        for _ in range(1000): 
            time.sleep(0.01)  # sleep for 0.01 seconds
CPU times: user 21.5 ms, sys: 14.8 ms, total: 36.3 ms 
Wall time: 11.6 s

%%timeit 使用了Python的 timeit 模块,该模块运行某语句100,000次(默认值),然后提供最快的3次的平均值作为结果。

In [3]: import numpy 
        %timeit numpy.random.normal(size=100)
The slowest run took 7.29 times longer than the fastest. This could mean that an intermediate result is being cached. 
100000 loops, best of 3: 5.5 µs per loop

12、Jupyter Magic - %%writefile and %pycat:导出cell内容/显示外部脚本的内容

使用%%writefile magic可以保存cell的内容到外部文件。 而%pycat功能相反,把外部文件语法高亮显示(以弹出窗方式)。

In [7]: %%writefile pythoncode.py 
        import numpy 
        def append_if_not_exists(arr, x): 
            if x not in arr: 
                arr.append(x) 

        def some_useless_slow_function(): 
            arr = list() 
            for i in range(10000): 
                x = numpy.random.randint(0, 10000) 
                append_if_not_exists(arr, x)
Writing pythoncode.py
In [8]: %pycat pythoncode.py
        import numpy 
        def append_if_not_exists(arr, x): 
            if x not in arr: 
                arr.append(x) 

        def some_useless_slow_function(): 
            arr = list() 
            for i in range(10000): 
                x = numpy.random.randint(0, 10000) 
                append_if_not_exists(arr, x)

13、Jupyter Magic - %prun: 告诉你程序中每个函数消耗的时间

使用%prun+函数声明会给你一个按顺序排列的表格,显示每个内部函数的耗时情况,每次调用函数的耗时情况,以及累计耗时。

In [47]: %prun some_useless_slow_function()
        26324 function calls in 0.556 seconds 
    Ordered by: internal time 
    ncalls tottime percall cumtime percall filename:lineno(function) 
    10000 0.527 0.000 0.528 0.000 <ipython-input-46-b52343f1a2d5>:2(append_if_not_exists) 
    10000 0.022 0.000 0.022 0.000 {method 'randint' of 'mtrand.RandomState' objects} 
    1 0.006 0.006 0.556 0.556 <ipython-input-46-b52343f1a2d5>:6(some_useless_slow_function) 
    6320 0.001 0.000 0.001 0.000 {method 'append' of 'list' objects} 
    1 0.000 0.000 0.556 0.556 <string>:1(<module>) 
    1 0.000 0.000 0.556 0.556 {built-in method exec} 
    1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

14、Jupyter Magic –用%pdb调试程序

Jupyter 有自己的调试界面The Python Debugger (pdb),使得进入函数内部检查错误成为可能。
Pdb中可使用的命令见链接

In [ ]: %pdb 
        def pick_and_take(): 
            picked = numpy.random.randint(0, 1000) 
            raise NotImplementedError() 

        pick_and_take() 

        Automatic pdb calling has been turned ON --------------------------------------------------------------------------- 
        NotImplementedError Traceback (most recent call last) 
        <ipython-input-24-0f6b26649b2e> in <module>() 
            5 raise NotImplementedError() 
            6 
       ---> 7 pick_and_take() 

        <ipython-input-24-0f6b26649b2e> in pick_and_take() 
            3 def pick_and_take(): 
            4 picked = numpy.random.randint(0, 1000) 
       ---> 5 raise NotImplementedError() 
            6 
            7 pick_and_take() 

        NotImplementedError: 
        > <ipython-input-24-0f6b26649b2e>(5)pick_and_take() 
            3 def pick_and_take(): 
            4 picked = numpy.random.randint(0, 1000) 
       ---> 5 raise NotImplementedError() 
            6 
            7 pick_and_take() 
        
        ipdb>

15、末句函数不输出

有时候不让末句的函数输出结果比较方便,比如在作图的时候,此时,只需在该函数末尾加上一个分号即可。

In [4]: %matplotlib inline 
        from matplotlib import pyplot as plt 
        import numpy 
        x = numpy.linspace(0, 1, 1000)**1.5
In [5]: # Here you get the output of the function 
        plt.hist(x)
Out[5]: 
        (array([ 216., 126., 106., 95., 87., 81., 77., 73., 71., 68.]), 
        array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ]), 
        <a list of 10 Patch objects>)
In [6]: # By adding a semicolon at the end, the output is suppressed. 
        plt.hist(x);

16、运行Shell命令

在notebook内部运行shell命令很简单,这样你就可以看到你的工作文件夹里有哪些数据集。

In [7]: !ls *.csv
nba_2016.csv     titanic.csv
pixar_movies.csv  whitehouse_employees.csv

17、用LaTex 写公式

当你在一个Markdown单元格里写LaTex时,它将用MathJax呈现公式:如 $$ P(A \mid B) = \frac{P(B \mid A) , P(A)}{P(B)} $$
会变成

$$ P(A \mid B) = \frac{P(B \mid A) , P(A)}{P(B)} $$

18、在notebook内用不同的内核运行代码

如果你想要,其实可以把不同内核的代码结合到一个notebook里运行。 只需在每个单元格的起始,用Jupyter magics调用kernal的名称:

  • %%bash
  • %%HTML
  • %%python2
  • %%python3
  • %%ruby
  • %%perl
In [6]: %%bash 
        for i in {1..5} 
        do 
            echo "i is $i" 
        done
i is 1 
i is 2 
i is 3 
i is 4 
i is 5

19、给Jupyter安装其他的内核

Jupyter的优良性能之一是可以运行不同语言的内核。下面以运行R内核为例说明:

简单的方法:通过Anaconda安装R内核

conda install -c r r-essentials

稍微麻烦的方法:手动安装R内核

如果你不是用Anaconda,过程会有点复杂,首先,你需要从CRAN安装R。 之后,启动R控制台,运行下面的语句:

install.packages(c('repr', 'IRdisplay', 'crayon', 'pbdZMQ', 'devtools'))
devtools::install_github('IRkernel/IRkernel')
IRkernel::installspec() # to register the kernel in the current R installation

20、在同一个notebook里运行R和Python

要这么做,最好的方法事安装rpy2(需要一个可以工作的R),用pip操作很简单:

pip install rpy2 

然后,就可以同时使用两种语言了,甚至变量也可以在二者之间公用:

In [1]: %load_ext rpy2.ipython
In [2]: %R require(ggplot2)
Out[2]: array([1], dtype=int32)
In [3]: import pandas as pd 
        df = pd.DataFrame({ 'Letter': ['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c'], 'X': [4, 3, 5, 2, 1, 7, 7, 5, 9], 'Y': [0, 4, 3, 6, 7, 10, 11, 9, 13], 'Z': [1, 2, 3, 1, 2, 3, 1, 2, 3] })
In [4]: %%R -i df 
        ggplot(data = df) + geom_point(aes(x = X, y= Y, color = Letter, size = Z))

21、用其他语言写函数

有时候numpy的速度有点慢,我想写一些更快的代码。
原则上,你可以在动态库里编译函数,用python来封装…
但是如果这个无聊的过程不用自己干,岂不更好?
你可以在cython或fortran里写函数,然后在python代码里直接调用。
首先,你要先安装:

!pip install cython fortran-magic 

In [ ]: %load_ext Cython
In [ ]: %%cython 
        def myltiply_by_2(float x): 
            return 2.0 * x
In [ ]: myltiply_by_2(23.)

我个人比较喜欢用Fortran,它在写数值计算函数时十分方便。更多的细节在这里

In [ ]: %load_ext fortranmagicIn [ ]: %%fortran subroutine compute_fortran(x, y, z) real, intent(in) :: x(:), y(:) real, intent(out) :: z(size(x, 1)) z = sin(x + y) end subroutine compute_fortranIn [ ]: compute_fortran([1, 2, 3], [4, 5, 6])

还有一些别的跳转系统可以加速python 代码。更多的例子见链接

22、支持多指针

Jupyter支持多个指针同步编辑,类似Sublime Text编辑器。按下Alt键并拖拽鼠标即可实现。

23、Jupyter外接拓展

Jupyter-contrib extensions是一些给予Jupyter更多更能的延伸程序,包括jupyter spell-checker和code-formatter之类.
下面的命令安装这些延伸程序,同时也安装一个菜单形式的配置器,可以从Jupyter的主屏幕浏览和激活延伸程序。

!pip install https://github.com/ipython-contrib/jupyter_contrib_nbextensions/tarball/master
!pip install jupyter_nbextensions_configurator
!jupyter contrib nbextension install --user
!jupyter nbextensions_configurator enable --user

24、从Jupyter notebook创建演示稿

Damian Avila的RISE允许你从已有的notebook创建一个powerpoint形式的演示稿。 你可以用conda来安装RISE:

conda install -c damianavila82 rise

或者用pip安装:

pip install RISE

然后运行下面的代码来安装和激活延伸程序:

jupyter-nbextension install rise --py --sys-prefix
jupyter-nbextension enable rise --py --sys-prefix

25、Jupyter输出系统

Notebook本身以HTML的形式显示,单元格输出也可以是HTML形式的,所以你可以输出任何东西:视频/音频/图像。 这个例子是浏览我所有的图片,并显示前五张图的缩略图。

In [12]: import os 
         from IPython.display import display, Image 
         names = [f for f in os.listdir('../images/ml_demonstrations/') if f.endswith('.png')] 
         for name in names[:5]: 
           display(Image('../images/ml_demonstrations/' + name, width=100))

我们也可以用bash命令创建一个相同的列表,因为magics和bash运行函数后返回的是python 变量:

In [10]: names = !ls ../images/ml_demonstrations/*.png 
         names[:5]
Out[10]: ['../images/ml_demonstrations/colah_embeddings.png', 
          '../images/ml_demonstrations/convnetjs.png', 
          '../images/ml_demonstrations/decision_tree.png', 
          '../images/ml_demonstrations/decision_tree_in_course.png', 
          '../images/ml_demonstrations/dream_mnist.png']

26、大数据分析

很多方案可以解决查询/处理大数据的问题:

  • ipyparallel(之前叫 ipython cluster) 是一个在python中进行简单的map-reduce运算的良好选择。我们在rep中使用它来并行训练很多机器学习模型。
  • pyspark
  • spark-sql magic %%sql

27、分享notebook

分享notebook最方便的方法是使用notebook文件(.ipynb),但是对那些不使用notebook的人,你还有这些选择:

  • 通过File > Download as > HTML 菜单转换到html文件。
  • gists或者github分享你的notebook文件。这两个都可以呈现notebook,示例见链接
  • 如果你把自己的notebook文件上传到github的仓库,可以使用很便利的Mybinder服务,允许另一个人进行半个小时的Jupyter交互连接到你的仓库。
  • jupyterhub建立你自己的系统,这样你在组织微型课堂或者工作坊,无暇顾及学生们的机器时就非常便捷了。
  • 将你的notebook存储在像dropbox这样的网站上,然后把链接放在nbviewer,nbviewer可以呈现任意来源的notebook。
  • 用菜单File > Download as > PDF 保存notebook为PDF文件。如果你选择本方法,我强烈建议你读一读Julius Schulz的文章
  • 用Pelican从你的notebook创建一篇博客

推荐阅读更多精彩内容