协同过滤算法研习

写在前面

先啰嗦几句,最近在看《集体智慧编程》,为了加深记忆,把学习的内容整理成文,后续还会写书中相关内容。既然是读书笔记,且本人是推荐算法入门选手,所以内容只能局限于此书。

什么是协同过滤

先举个生活中的场景,你想听歌却不知道听什么的时候,会向你身边与你品位类似的朋友求助,从而获得他的推荐。协同过滤(Collaborative Filtering,简称CF)就像与你品味相近的朋友,通过对大量结构化数据进行计算,找出与你相似的其他用户(user)或与你喜欢的物品(item)相似的物品,从而实现物品推荐。

协同过滤分为两类:基于用户的协同过滤(User-Based CF)和基于物品的协同过滤(Item-Based CF)。结合前文的介绍便不难理解分别的应用场景。

计算相似度之前需要先准备一些如下表所示的数据集:

用户 战争 喜欢 春风吹 迷宫
小明 4 3 - 5
小强 5 1 3 4
小王 2 4 3 5
小利 4 3 2 1

它是一种表达不同人对不同物品偏好的方式,例如音乐应用可以用0和1表示喜欢不喜欢和喜欢。

User-Based CF

如果你和小明对于音乐的品位相似,假如小明喜欢听Adele,那么你也有可能喜欢听。好了,问题来了:

  • 如何衡量两个用户是否相似?
  • 如何根据相似用户推荐物品?

相似度计算

相似度通过如下公式计算得到:

y = f(data, user1, user2)

其中,data就是前文提到的数据集,user1和user2表示要比较的两个用户或物品。书中主要介绍了两种相似度计算函数:欧几里得距离评价皮尔逊相关度评价

欧几里得距离
它以经过人们一致评价的物品为坐标轴,然后将参与评价的人绘制到图上,并考察他们彼此间的距离远近。输出满足y∈[0,1],1表示user1和user2具有相同的偏好,0表示user1和user2偏好不同。

皮尔逊相关度
它是比欧几里得距离更复杂的一种表示相似度的方法。用于判断两组数据与某一直线拟合程度,在数据不是很规范的时候(比如,影评者对影片的评价总是相对于平均水平偏离很大时),会倾向于给出更好的结果。皮尔逊可以简单理解为cos(x)函数,所以其输出满足y∈[-1,1],1表示user1和user2具有相同的偏好,0表示user1和user2偏好不同,-1表示user1和user2偏好负相关。如果难以理解可以参考:如何理解皮尔逊相关系数(Pearson Correlation Coefficient)?

由于本人高数上下都是勉强及格,对于这两个函数理解的也不深,所以没办法深入浅出的解释,不过只要知道每种计算方法的适应范围和局限性就好了。

推荐物品

第一个问题解决了,来看看如何推荐物品。如果只是把相似用户喜欢的物品推荐给被推荐者,未免过于草率,而且又该如何选择相似用户呢。

推荐算法
结合前文数据集进行说明。

  • 计算出所有用户两两之间的相似度;
  • 指定一个被推荐者:小明;
  • 找出其他用户评价过且被推荐者未评价的物品:春风吹;
  • 以被推荐者与他人的相似度作为权,将权与其他用户对该物品的评分相乘;
  • 【x春风吹】一列值之和除以相似度一列值之和,最终结果(2.875)便为预测的小明对于春风吹的评分。
用户 相似度 战争 x战争 喜欢 x喜欢 春风吹 x春风吹 迷宫 x迷宫
小强 0.9 5 4.5 1 0.9 3 2.7 4 3.6
小王 0.5 2 1 4 2 3 1.5 5 2.5
小利 0.2 4 0.8 3 0.6 2 0.4 1 0.2
合计 1.6 - - - - - 4.6 - -

注:相似度随便写的,并非计算所得。

至此可以给出推荐算法公式:

y = f(data, user, sim)

其中,data就是前文提到的数据集,user为被推荐者,sim为相似度计算函数,可以根据场景不同选择不同的计算函数。从输出总选择评分较高的物品推荐给用户,从而实现物品推荐。

Item-Based CF

基于物品的推荐思路是:根据你评价过的物品,找出与其相似的物品。

相似度计算

方法与User CF相同,只是我们需要把前文数据集进行转置,并计算所有物品两两之间的相似度。

推荐物品

如同User CF,我们不能简单的推荐与我们偏好物品类似的物品。
推荐算法

  • 计算出所有物品两两之间的相似度;
  • 指定一个被推荐者;
  • 找出被推荐者评价过的物品;
  • 以被推荐者评价过的物品与其他物品的相似度作为权,将权与被推荐者对该物品的评分相乘;
  • 【xXX】一列值之和除以相似度一列值之和,最终结果便为预测的被推荐者对于其未评价过物品的评分。
歌曲 评分 迷宫 x迷宫 所幸 x所幸 来不及 x来不及
战争 4 0.3 1.2 0.1 0.4 0.8 3.2
喜欢 3 0.5 1.5 0.4 1.2 0.7 2.1
春风吹 5 0.4 2 0.2 1 0.5 2.5
合计 - 1.2 4.7 0.7 2.6 2 7.8
归一化结果 - - 3.92 - 3.71 - 3.9

注:相似度随便写的,并非计算所得;并且根据说明需要增加了一些音乐

至此可以给出推荐算法公式:

y = f(data, itemMatch, user)

其中,data就是前文提到的数据集,user为被推荐者,itemMatch为所有物品两两之间相似度的数据集,计算itemMatch时,可以根据场景不同选择不同的计算函数。从输出总选择评分较高的物品推荐给用户,从而实现基于物品的物品推荐。

如何选择?

  1. 基于物品进行过滤的方式要过于基于用户的方式,不过它需要维护物品相似度表的额外开销,这也是它快的原因;
  2. 对于稀疏数据集,Item-Based CF效果优于User-Based CF;
  3. 对于密集数据集,两者效果几乎相同;
  4. 最重要的是,结合应用场景选择合适的方法。

一句话心得

我对于协同过滤的理解是:

计算用户/物品相似度,以相似度作为权重,对不同物品进行评分预测,从而实现物品。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 157,198评论 4 359
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 66,663评论 1 290
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 106,985评论 0 237
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,673评论 0 202
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 51,994评论 3 285
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,399评论 1 211
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,717评论 2 310
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,407评论 0 194
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,112评论 1 239
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,371评论 2 241
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 31,891评论 1 256
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,255评论 2 250
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 32,881评论 3 233
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,010评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,764评论 0 192
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,412评论 2 269
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,299评论 2 260

推荐阅读更多精彩内容