二、算法——04、时间复杂度

常见时间复杂度

算法的时空复杂度的表示,指明某个算法的耗时与数据增长量之间的关系
O(n),代表数据量增大几倍,耗时也增大几倍。比如常见的遍历算法
O(n^2),代表数据量增大n倍时,耗时增大n的平方倍。冒泡排序
O(logn),当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。二分查找就是O(logn)的算法,每找一次排除一半的可能,256个数据中查找只要找8次就可以找到目标。
O(nlogn)同理,就是n乘以logn,当数据增大256倍时,耗时增大256*8=2048倍。这个复杂度高于线性低于平方。归并排序就是O(nlogn)的时间复杂度。
O(1)就是最低的时空复杂度了,也就是耗时/耗空间与输入数据大小无关,无论输入数据增大多少倍,耗时/耗空间都不变。 哈希算法就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(不考虑冲突的话)。
Amort.O(1)表示仅完成一次操作,可能会有O(n)行为;但是如果完成多次操作,如n次,平均结果是O(1)。

求解算法的时间复杂度的具体步骤:

⑴ 找出算法中的基本语句;
  算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。
  ⑵ 计算基本语句的执行次数的数量级;
  只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。
  ⑶ 用大Ο记号表示算法的时间性能。
  将基本语句执行次数的数量级放入大Ο记号中。
  如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:
  for (i=1; i<=n; i++)
  x++;
  for (i=1; i<=n; i++)
  for (j=1; j<=n; j++)
  x++;
  第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。
  常见的算法时间复杂度由小到大依次为:
  Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)
Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)和Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。计算机科学家普遍认为前者是有效算法,把这类问题称为P类问题,而把后者称为NP问题。
这只能基本的计算时间复杂度,具体的运行还会与硬件有关。
上面的这部分内容是比较可靠的,理解的时候,可以参看着下面的这部分内容。

在计算算法时间复杂度时的几个简单的程序分析法则:

1.对于一些简单的输入输出语句或赋值语句,近似认为需要O(1)时间
2.对于顺序结构,需要依次执行一系列语句所用的时间可采用大O下"求和法则"
求和法则:是指若算法的2个部分时间复杂度分别为 T1(n)=O(f(n))和 T2(n)=O(g(n)),则 T1(n)+T2(n)=O(max(f(n), g(n)))
特别地,若T1(m)=O(f(m)), T2(n)=O(g(n)),则 T1(m)+T2(n)=O(f(m) + g(n))
3.对于选择结构,如if语句,它的主要时间耗费是在执行then字句或else字句所用的时间,需注意的是检验条件也需要O(1)时间
4.对于循环结构,循环语句的运行时间主要体现在多次迭代中执行循环体以及检验循环条件的时间耗费,一般可用大O下"乘法法则"
乘法法则: 是指若算法的2个部分时间复杂度分别为 T1(n)=O(f(n))和 T2(n)=O(g(n)),则 T1T2=O(f(n)g(n))
5.对于复杂的算法,可以将它分成几个容易估算的部分,然后利用求和法则和乘法法则技术整个算法的时间复杂度
另外还有以下2个运算法则:
(1) 若g(n)=O(f(n)),则O(f(n))+ O(g(n))= O(f(n))
(2) O(Cf(n)) = O(f(n)),其中C是一个正常数
可以用以上法则对下面程序段进行简单分析
①for (i=0; i<n; i++)
② for (j=0; j<n; j++)
{
③ c[i][j] = 0;
④ for (k=0; k<n; k++)
⑤ c[i][j]= c[i][j]+ a[i][k]* b[k][j];/ * T5(n) = O(1) /
}
第①条与②③④⑤是循环嵌套T1(n)
T2(n)* (T3(n)+ T4(n)* T5(n))= O(nnn)即为整个算法的时间复杂度
O(1)<O(log2n)<O(n)<O(n log2 n)<O(n2)<O(n3)<O(2^n)