网络层的详解

参考链接

www.cnblogs.com/wendingding/p/3813466.html

www.jianshu.com/p/1389677a5840

www.cnblogs.com/meier1205/p/5971313.html

blog.csdn.net/hopedark/article/details/50729763

我相信出去面试的同学经常会被问到网络层相关的问题,其实作为一个ios开发,可能接触这一块比较少,但是如果想表现自己是一位老程序员,这方面的知识是不可少的.首先上一张图给大家看看网络请求过程.

请求数据结构

七层模型介绍(OSI 模型(Open System Interconnection model))

1.物理层:物理层负责最后将信息编码成电流脉冲或其它信号用于网上传输;eg:RJ45等将数据转化成0和1;



2.数据链路层:数据链路层通过物理网络链路提供数据传输。不同的数据链路层定义了不同的网络和协 议特征,其中包括物理编址、网络拓扑结构、错误校验、数据帧序列以及流控;可以简单的理解为:规定了0和1的分包形式,确定了网络数据包的形式;

数据链路层:SLIP,CSLIP,PPP,MTU


3.网络层:网络层负责在源和终点之间建立连接;可以理解为,此处需要确定计算机的位置,怎么确定?IPv4,IPv6!

网络层:IP,ICMP,OSPF,EIGRP,IGMP

IP 协议:是网络互连协议(Internet Protocol)的缩写。它提供了能适应各种网络硬件的灵活性,对底层网络硬件几乎没任何要求,任何一个网络只要能够从一个地点向另一个地点传送二进制数据,即可使用IP协议加入互联网络了


4.传输层:传输层向高层提提供可靠的端到端的网络数据流服务,可以理解为:每一个应用程序都会在网卡注册一个端口号,该层就是端口与端口的通信!常用的(TCP/IP)协议;

传输层:TCP,UDP

说说关于UDP/TCP的区别?

UDP: 是用户数据报协议: 主要用在实时性要求高以及对质量相对较弱的地方,但面对现在高质量的线路不是容易丢包除非是一些拥塞条件下, 如流媒体

TCP: 是传输控制协议:是面连接的,那么运行环境必然要求其可靠性不可丢包有良好的拥塞控制机制如http ftp telnet 等

什么是三次握手与四次挥手?

三次握手实现的过程:

第一次握手:建立连接时,客户端发送同步序列编号到服务器,并进入发送状态,等待服务器确认

第二次:服务器收到同步序列编号,确认并同时自己也发送一个同步序列编号+确认标志,此时服务器进入接收状态

第三次:客户端收到服务器发送的包,并向服务器发送确认标志,随后链接成功。

注意:是在链接成功后在进行数据传输。

四次挥手:

第一次: 客户端向服务器发送一个带有结束标记的报文。

第二次:服务器收到报文后,向客户端发送一个确认序号,同时通知自己相应的应用程序:对方要求关闭连接

第三次: 服务器向客户端发送一个带有结束标记的报文。

第四次: 客户端收到报文后,向服务器发送一个确认序号。链接关闭。


5.会话层:会话层建立、管理和终止表示层与实体之间的通信会话;建立一个连接(自动的手机信息、自动的网络寻址);









6.表示层:表示层提供多种功能用于应用层数据编码和转化,以确保以一个系统应用层发送的信息 可以被另一个系统应用层识别;可以理解为:解决不同系统之间的通信,eg:Linux下的QQ和Windows下的QQ可以通信;








7.应用层:OSI 的应用层协议:包括文件的传输、访问及管理协议(FTAM) ,以及文件虚拟终端协议(VIP)和公用管理系统信息(CMIP)等;

应用层:TFTP,HTTP,SNMP,FTP,SMTP,DNS,Telnet 等等

一、HTTP 协议:是超文本传输协议,对应于应用层,用于如何封装数据,http 为短连接:客户端发送请求都需要服务器端回送响应.请求结束后,主动释放链接,因此为短连接。通常的做法是,不需要任何数据,也要保持每隔一段时间向服务器发送"保持连接"的请求。这样可以保证客户端在服务器端是"上线"状态,HTTP连接使用的是"请求-响应"方式,不仅在请求时建立连接,而且客户端向服务器端请求后,服务器才返回数据。

二、FTP 协议 :是文件传输协议,是File Transfer Protocol的简称,它的作用是用于控制互联网上文件的双向传输,因此一定不会是即时聊天使用的;UDP是面向无连接的传输层协议,数据传输是不可靠的,它只管发,不管收不收得到;TCP是面向连接的,可靠的传输层协议;HTTP是超文本传输协议,对应于应用层,而HTTP是基于TCP的。


二.网络请求篇---URL

          客户端都是通过一个URL去请求数据,那我们就根据这个URL去解读这个请求的过程以 及涉及的知识,.URL的全称是Uniform Resource Locator(统一资源定位符),通过1个URL,能找到互联网上唯一的1个资源,URL就是资源的地址、位置.互联网上的每个资源都有一个唯一的URL.

 一. URL 基本介绍

请求格式

二.URL中常见的协议介绍

(1)HTTP  

超文本传输协议,访问的是远程的网络资源,格式是http://

1、HTTP协议简介

不管是移动客户端还是PC端,访问远程的网络资源经常使用HTTP协议,访问百度主页:http://www.baidu.com,获得新浪的微博数据,获得大众点评的团购数据.

2.HTTP协议的作用

 HTTP的全称是Hypertext Transfer Protocol,超文本传输协议

(1)规定客户端和服务器之间的数据传输格式

(2)让客户端和服务器能有效地进行数据沟通

3.HTTP的通信过程

要想使用HTTP协议向服务器索取数据,得先了解HTTP通信的完整过程

完整的http通信可以分为2大步骤

(1)请求:客户端向服务器索要数据

(2)响应:服务器返回客户端相应的数据

4.HTTP通信过程 - 请求和响应

  4.1.HTTP通信过程 - 请求

HTTP协议规定:1个完整的由客户端发给服务器的HTTP请求中包含以下内容

请求行:包含了请求方法、请求资源路径、HTTP协议版本

GET /MJServer/resources/images/1.jpg HTTP/1.1

请求头:包含了对客户端的环境描述、客户端请求的主机地址等信息

Host: 192.168.1.105:8080// 客户端想访问的服务器主机地址

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9) Firefox/30.0// 客户端的类型,客户端的软件环境

Accept: text/html, */*// 客户端所能接收的数据类型

Accept-Language: zh-cn// 客户端的语言环境

Accept-Encoding: gzip// 客户端支持的数据压缩格式

请求体:客户端发给服务器的具体数据,比如文件数据

4.2.HTTP通信过程 - 响应

客户端向服务器发送请求,服务器应当做出响应,即返回数据给客户端

HTTP协议规定:1个完整的HTTP响应中包含以下内容:

状态行:包含了HTTP协议版本、状态码、状态英文名称

HTTP/1.1 200 OK

响应头:包含了对服务器的描述、对返回数据的描述

Server: Apache-Coyote/1.1// 服务器的类型

Content-Type: image/jpeg// 返回数据的类型

Content-Length: 56811// 返回数据的长度

Date: Mon, 23 Jun 2014 12:54:52 GMT// 响应的时间

实体内容:服务器返回给客户端的具体数据,比如文件数据

5.请求方法

在HTTP/1.1协议中,定义了8种发送http请求的方法

GET、POST、OPTIONS、HEAD、PUT、DELETE、TRACE、CONNECT、PATCH

根据HTTP协议的设计初衷,不同的方法对资源有不同的操作方式

PUT :增

DELETE :删

POST:改

GET:查

提示:最常用的是GET和POST(实际上GET和POST都能办到增删改查)

2.get和post请求

要想使用GET和POST请求跟服务器进行交互,得先了解一个概念:参数就是传递给服务器的具体数据,比如登录时的帐号、密码

GET和POST对比:GET和POST的主要区别表现在数据传递上

GET

在请求URL后面以?的形式跟上发给服务器的参数,多个参数之间用&隔开,比如http://ww.test.com/login?username=123&pwd=234&type=JSON

注意:由于浏览器和服务器对URL长度有限制,因此在URL后面附带的参数是有限制的,通常不能超过1KB

POST

发给服务器的参数全部放在请求体中

理论上,POST传递的数据量没有限制(具体还得看服务器的处理能力)

3.GET和POST的选择

   选择GET和POST的建议

(1)如果要传递大量数据,比如文件上传,只能用POST请求

(2)GET的安全性比POST要差些,如果包含机密\敏感信息,建议用POST

(3)如果仅仅是索取数据(数据查询),建议使用GET

(4)如果是增加、修改、删除数据,建议使用POST.


三、Socket 连接

要想明白 Socket,必须要理解 TCP 连接。

TCP 三次握手:握手过程中并不传输数据,在握手后服务器与客户端才开始传输数据,理想状态下,TCP 连接一旦建立,在通讯双方中的任何一方主动断开连接之前 TCP 连接会一直保持下去。

Socket 是对 TCP/IP 协议的封装,Socket 只是个接口不是协议,通过 Socket 我们才能使用 TCP/IP 协议,除了 TCP,也可以使用 UDP 协议来传递数据。

创建 Socket 连接的时候,可以指定传输层协议,可以是 TCP 或者 UDP,当用 TCP 连接,该Socket就是个TCP连接,反之。

Socket 原理

Socket 连接,至少需要一对套接字,分为 clientSocket,serverSocket 连接分为3个步骤:

(1) 服务器监听:服务器并不定位具体客户端的套接字,而是时刻处于监听状态;

(2) 客户端请求:客户端的套接字要描述它要连接的服务器的套接字,提供地址和端口号,然后向服务器套接字提出连接请求;

(3) 连接确认:当服务器套接字收到客户端套接字发来的请求后,就响应客户端套接字的请求,并建立一个新的线程,把服务器端的套接字的描述发给客户端。一旦客户端确认了此描述,就正式建立连接。而服务器套接字继续处于监听状态,继续接收其他客户端套接字的连接请求.

Socket为长连接:通常情况下Socket 连接就是 TCP 连接,因此 Socket 连接一旦建立,通讯双方开始互发数据内容,直到双方断开连接。在实际应用中,由于网络节点过多,在传输过程中,会被节点断开连接,因此要通过轮询高速网络,该节点处于活跃状态。

很多情况下,都是需要服务器端向客户端主动推送数据,保持客户端与服务端的实时同步。

若双方是 Socket 连接,可以由服务器直接向客户端发送数据。

若双方是 HTTP 连接,则服务器需要等客户端发送请求后,才能将数据回传给客户端。

因此,客户端定时向服务器端发送请求,不仅可以保持在线,同时也询问服务器是否有新数据,如果有就将数据传给客户端。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 157,298评论 4 360
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 66,701评论 1 290
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 107,078评论 0 237
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,687评论 0 202
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,018评论 3 286
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,410评论 1 211
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,729评论 2 310
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,412评论 0 194
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,124评论 1 239
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,379评论 2 242
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 31,903评论 1 257
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,268评论 2 251
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 32,894评论 3 233
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,014评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,770评论 0 192
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,435评论 2 269
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,312评论 2 260

推荐阅读更多精彩内容