Netty-对象池(Recycler)

在netty的池化ByteBuf分配中,包含ByteBuf对象的池化和真实内存(array或者DirectByteBuffer)的池化。本文内容为对象池的细节,真实内存的池化参见:netty-内存管理

实际上Recycler不仅可以用于ByteBuf对象的池化,他是一个通用的对象池化技术,我们可以直接使用Recycler实现自身系统对象的池化。

1. 对象池化的作用

在netty中ByteBuf的创建是个非常频繁的过程,使用对象池可以起到对象可以复用,减少gc频率的作用。

2. Recycler的关键技术点

  1. 多线程竞争下的对象分配和释放(怎么减小多线程竞争)
    每个线程都有自己的对象池,分配时从自己的对象池中获得一个对象。其他线程release对象时,把对象归还到原来自己的池子中去(分配线程的池子)。
    大量使用了ThreadLocal,每个线程都有自己的stack和weakorderqueue,做到线程封闭,有力减小竞争。
  2. 对象的分配
    2.1 先从stack中分配,如果stack有,则直接stack.pop获得对象
    2.2 如果stack中没有,从WeakOrderQueue中一次移取多个对象到stack中(每次会尽可能scavenge整个head Link到stack中),最后stack.pop获得对象。
  3. 对象的release
    3.1 如果release线程就是对象的分配线程,直接入栈
    3.2 如果release线程和对象的分配线程不是同一个线程,则归还到分配线程的WeakOrderQueue中。release线程维护的数据结构为:ThreadLocal<Map<Stack,WeakOrderQueue>>

3. 未解疑问

  1. 为什么需要WeakOrderQueue?
    WeakOrderQueue的存在是用于非分配对象的线程在release对象时将对象归还到分配线程的对象池中,如果直接把对象归还到release对象的线程中,也就是release线程直接stack.push岂不是很高效?
image.png

INITIAL_CAPACITY = min(DEFAULT_MAX_CAPACITY_PER_THREAD, 256);
maxCapacity=32768

4. Recycler核心结构

Recycler关联了4个核心类:

  1. DefaultHandle:对象的包装类,在Recycler中缓存的对象都会包装成DefaultHandle类。
  2. Stack:存储本线程回收的对象。对象的获取和回收对应Stack的pop和push,即获取对象时从Stack中pop出1个DefaultHandle,回收对象时将对象包装成DefaultHandle push到Stack中。Stack会与线程绑定,即每个用到Recycler的线程都会拥有1个Stack,在该线程中获取对象都是在该线程的Stack中pop出一个可用对象。
    stack底层以数组作为存储结构,初始大小为256,最大大小为32768。
  3. WeakOrderQueue:存储其它线程回收到分配线程的对象,当某个线程从Stack中获取不到对象时会从WeakOrderQueue中获取对象。
    3.1 从分配线程的角度来看,每个分配线程的Stack拥有1个WeakOrderQueue链表,每个WeakOrderQueue元素维持了对应release线程归还的对象。每个分配线程的WeakOrderQueue链表的对象池子中的对象数量不能超过availableSharedCapacity = new AtomicInteger(max(maxCapacity / maxSharedCapacityFactor, LINK_CAPACITY));,该值默认为16K=16384。
    3.2 从release角度看,主要的数据结构为:
    image.png

    Map<Stack<?>, WeakOrderQueue>维持了release线程向每个分配线程归还对象的数据结构,Map的大小不超过MAX_DELAYED_QUEUES_PER_THREAD = max(0, SystemPropertyUtil.getInt("io.netty.recycler.maxDelayedQueuesPerThread", // We use the same value as default EventLoop number NettyRuntime.availableProcessors() * 2));
    也就是release线程默认最多能向核数*2个分配线程归还对象。
  4. Link: WeakOrderQueue中包含1个Link链表,回收对象存储在链表某个Link节点里,当Link节点存储的回收对象满了时会新建1个Link放在Link链表尾。
    private static final class Link extends AtomicInteger
    每个Link节点默认能存储16个元素,通过继承AtomicInteger是为了解决分配线程通过WeakOrderQueue和回收线程归还对象时的线程竞争。

整个Recycler回收对象存储结构如下图所示:

image.png

5. Recycler实现细节

本节部分内容摘录自[NettyRecycler(https://www.jianshu.com/p/4eab8450560c)。

Recycler用来实现对象池,其中对应堆内存和直接内存的池化实现分别是PooledHeapByteBuf和PooledDirectByteBuf。Recycler主要提供了3个方法:

  • get():获取一个对象。
  • recycle(T, Handle):回收一个对象,T为对象泛型。
  • newObject(Handle):当没有可用对象时创建对象的实现方法。

Recycler的UML图如下:

image.png

下面分析下源码,首先看下Recycler.recycle(T, Handle)方法,用于回收1个对象:

public final boolean recycle(T o, Handle handle) {
    if (handle == NOOP_HANDLE) {
        return false;
    }

    DefaultHandle h = (DefaultHandle) handle;
    if (h.stack.parent != this) {
        return false;
    }
    if (o != h.value) {
        throw new IllegalArgumentException("o does not belong to handle");
    }
    h.recycle();
    return true;
}

回收1个对象会调用该对象DefaultHandle.recycle()方法,如下:

 public void recycle() {
    stack.push(this);
 }

回收1个对象(DefaultHandle)就是把该对象push到stack中。

void push(DefaultHandle item) {
        Thread currentThread = Thread.currentThread();
        if (thread == currentThread) {
            // The current Thread is the thread that belongs to the Stack, we can try to push the object now.
            /**
             * 如果该stack就是本线程的stack,那么直接把DefaultHandle放到该stack的数组里
             */
            pushNow(item);
        } else {
            // The current Thread is not the one that belongs to the Stack, we need to signal that the push
            // happens later.
            /**
             * 如果该stack不是本线程的stack,那么把该DefaultHandle放到该stack的WeakOrderQueue中
             */
            pushLater(item, currentThread);
        }
    }

这里分为两种情况,当stack是当前线程对应的stack时,执行pushNow(item)方法,直接把对象放到该stack的DefaultHandle数组中,如下:

    /**
     * 直接把DefaultHandle放到stack的数组里,如果数组满了那么扩展该数组为当前2倍大小
     * @param item
     */
    private void pushNow(DefaultHandle item) {
        if ((item.recycleId | item.lastRecycledId) != 0) {
            throw new IllegalStateException("recycled already");
        }
        item.recycleId = item.lastRecycledId = OWN_THREAD_ID;

        int size = this.size;
        if (size >= maxCapacity || dropHandle(item)) {
            // Hit the maximum capacity or should drop - drop the possibly youngest object.
            return;
        }
        if (size == elements.length) {
            elements = Arrays.copyOf(elements, min(size << 1, maxCapacity));
        }

        elements[size] = item;
        this.size = size + 1;
    }

当stack是其它线程的stack时,执行pushLater(item, currentThread)方法,将对象放到WeakOrderQueue中,如下:

private void pushLater(DefaultHandle item, Thread thread) {
       /** 
        * Recycler有1个stack->WeakOrderQueue映射,每个stack会映射到1个WeakOrderQueue,这个WeakOrderQueue是该stack关联的其它线程WeakOrderQueue链表的head WeakOrderQueue。
        * 当其它线程回收对象到该stack时会创建1个WeakOrderQueue中并加到stack的WeakOrderQueue链表中。 
        */
        Map<Stack<?>, WeakOrderQueue> delayedRecycled = DELAYED_RECYCLED.get();
        WeakOrderQueue queue = delayedRecycled.get(this);
        if (queue == null) {
            /**
             * 如果delayedRecycled满了那么将1个伪造的WeakOrderQueue(DUMMY)放到delayedRecycled中,并丢弃该对象(DefaultHandle)
             */
            if (delayedRecycled.size() >= maxDelayedQueues) {
                // Add a dummy queue so we know we should drop the object
                delayedRecycled.put(this, WeakOrderQueue.DUMMY);
                return;
            }
            // Check if we already reached the maximum number of delayed queues and if we can allocate at all.
            /**
             * 创建1个WeakOrderQueue
             */
            if ((queue = WeakOrderQueue.allocate(this, thread)) == null) {
                // drop object
                return;
            }
            delayedRecycled.put(this, queue);
        } else if (queue == WeakOrderQueue.DUMMY) {
            // drop object
            return;
        }

        /**
         * 将对象放入到该stack对应的WeakOrderQueue中
         */
        queue.add(item);
    }

static WeakOrderQueue allocate(Stack<?> stack, Thread thread) {
        // We allocated a Link so reserve the space
        /**
         * 如果该stack的可用共享空间还能再容下1个WeakOrderQueue,那么创建1个WeakOrderQueue,否则返回null
         */
        return reserveSpace(stack.availableSharedCapacity, LINK_CAPACITY)
                ? new WeakOrderQueue(stack, thread) : null;
    }

WeakOrderQueue的构造函数如下,WeakOrderQueue实现了多线程环境下回收对象的机制,当由其它线程回收对象到stack时会为该stack创建1个WeakOrderQueue,这些由其它线程创建的WeakOrderQueue会在该stack中按链表形式串联起来,每次创建1个WeakOrderQueue会把该WeakOrderQueue作为该stack的head WeakOrderQueue:

private WeakOrderQueue(Stack<?> stack, Thread thread) {
        head = tail = new Link();
        owner = new WeakReference<Thread>(thread);
        /**
         * 每次创建WeakOrderQueue时会更新WeakOrderQueue所属的stack的head为当前WeakOrderQueue, 当前WeakOrderQueue的next为stack的之前head,
         * 这样把该stack的WeakOrderQueue通过链表串起来了,当下次stack中没有可用对象需要从WeakOrderQueue中转移对象时从WeakOrderQueue链表的head进行scavenge转移到stack的对DefaultHandle数组。
         */
        synchronized (stack) {
            next = stack.head;
            stack.head = this;
        }
        availableSharedCapacity = stack.availableSharedCapacity;
    }

下面再看Recycler.get()方法:

public final T get() {
    if (maxCapacity == 0) {
        return newObject(NOOP_HANDLE);
    }
    Stack<T> stack = threadLocal.get();
    DefaultHandle handle = stack.pop();
    if (handle == null) {
        handle = stack.newHandle();
        handle.value = newObject(handle);
    }
    return (T) handle.value;
}

取出该线程对应的stack,从stack中pop出1个DefaultHandle,返回该DefaultHandle的真正对象。
下面看stack.pop()方法:

DefaultHandle pop() {
        int size = this.size;
        if (size == 0) {
            if (!scavenge()) {
                return null;
            }
            size = this.size;
        }
        size --;
        DefaultHandle ret = elements[size];
        elements[size] = null;
        if (ret.lastRecycledId != ret.recycleId) {
            throw new IllegalStateException("recycled multiple times");
        }
        ret.recycleId = 0;
        ret.lastRecycledId = 0;
        this.size = size;
        return ret;
    }

如果该stack的DefaultHandle数组中还有对象可用,那么从该DefaultHandle数组中取出1个可用对象返回,如果该DefaultHandle数组没有可用的对象了,那么执行scavenge()方法,将head WeakOrderQueue中的head Link中的DefaultHandle数组转移到stack的DefaultHandle数组,scavenge方法如下:

boolean scavenge() {
        // continue an existing scavenge, if any
        if (scavengeSome()) {
            return true;
        }

        // reset our scavenge cursor
        prev = null;
        cursor = head;
        return false;
    }

具体执行了scavengeSome()方法,清理WeakOrderQueue中部分DefaultHandle到stack,每次尽可能清理head WeakOrderQueue的head Link的全部DefaultHandle,如下:

boolean scavengeSome() {
        WeakOrderQueue cursor = this.cursor;
        if (cursor == null) {
            cursor = head;
            if (cursor == null) {
                return false;
            }
        }

        boolean success = false;
        WeakOrderQueue prev = this.prev;
        do {
            /**
             * 将当前WeakOrderQueue的head Link的DefaultHandle数组转移到stack的DefaultHandle数组中
             */
            if (cursor.transfer(this)) {
                success = true;
                break;
            }

            WeakOrderQueue next = cursor.next;
            if (cursor.owner.get() == null) {
                if (cursor.hasFinalData()) {
                    for (;;) {
                        if (cursor.transfer(this)) {
                            success = true;
                        } else {
                            break;
                        }
                    }
                }
                if (prev != null) {
                    prev.next = next;
                }
            } else {
                prev = cursor;
            }

            cursor = next;

        } while (cursor != null && !success);

        this.prev = prev;
        this.cursor = cursor;
        return success;
    }

WeakOrderQueue.transfer()方法如下,将WeakOrderQueue的head Link中的DefaultHandle数组迁移到stack中:

boolean transfer(Stack<?> dst) {
        Link head = this.head;
        if (head == null) {
            return false;
        }

        /**
         * 如果head Link的readIndex到达了Link的容量LINK_CAPACITY,说明该Link已经被scavengge完了。
         * 这时需要把下一个Link作为新的head Link。
         */
        if (head.readIndex == LINK_CAPACITY) {
            if (head.next == null) {
                return false;
            }
            this.head = head = head.next;
        }

        final int srcStart = head.readIndex;
        /**
         * head Link的回收对象数组的最大位置
         */
        int srcEnd = head.get();
        /**
         * head Link可以scavenge的DefaultHandle的数量
         */
        final int srcSize = srcEnd - srcStart;
        if (srcSize == 0) {
            return false;
        }

        final int dstSize = dst.size;

        /**
         * 每次会尽可能scavenge整个head Link,如果head Link的DefaultHandle数组能全部迁移到stack中,stack的DefaultHandle数组预期容量
         */
        final int expectedCapacity = dstSize + srcSize;
        /**
         * 如果预期容量大于stack的DefaultHandle数组最大长度,说明本次无法将head Link的DefaultHandle数组全部迁移到stack中
         */
        if (expectedCapacity > dst.elements.length) {
            final int actualCapacity = dst.increaseCapacity(expectedCapacity);
            srcEnd = min(srcStart + actualCapacity - dstSize, srcEnd);
        }

        if (srcStart != srcEnd) {
            /**
             * head Link的DefaultHandle数组
             */
            final DefaultHandle[] srcElems = head.elements;
            /**
             * stack的DefaultHandle数组
             */
            final DefaultHandle[] dstElems = dst.elements;
            int newDstSize = dstSize;
            /**
             * 迁移head Link的DefaultHandle数组到stack的DefaultHandle数组
             */
            for (int i = srcStart; i < srcEnd; i++) {
                DefaultHandle element = srcElems[i];
                if (element.recycleId == 0) {
                    element.recycleId = element.lastRecycledId;
                } else if (element.recycleId != element.lastRecycledId) {
                    throw new IllegalStateException("recycled already");
                }
                srcElems[i] = null;

                if (dst.dropHandle(element)) {
                    // Drop the object.
                    continue;
                }
                element.stack = dst;
                dstElems[newDstSize ++] = element;
            }

            /**
             * 当head节点的对象全都转移给stack后,取head下一个节点作为head,下次转移的时候再从新的head转移回收的对象
             */
            if (srcEnd == LINK_CAPACITY && head.next != null) {
                // Add capacity back as the Link is GCed.
                reclaimSpace(LINK_CAPACITY);

                this.head = head.next;
            }
            /**
             * 迁移完成后更新原始head Link的readIndex
             */
            head.readIndex = srcEnd;
            if (dst.size == newDstSize) {
                return false;
            }
            dst.size = newDstSize;
            return true;
        } else {
            // The destination stack is full already.
            return false;
        }
    }

推荐阅读更多精彩内容