Labels: Numpy Arrays, DataFrames

# Numpy Arrays [1]

``````# Import the numpy package as np
import numpy as np
``````
• Element-wise calculations: fast and computationally efficient
• subset: quickly find out a subset according to the conditions
``````list = [1,2,3]
np_list = np.array(list)   # Construct
sub_np_list = np_list[np_list>2]   # Find all elements larger than 2
``````

# Pandas DataFrames [2]

• Store and manipulate tabular data in rows of observations and columns of variables.
``````dict = {"country": ["Brazil", "Russia", "India", "China", "South Africa"],
"capital": ["Brasilia", "Moscow", "New Dehli", "Beijing", "Pretoria"],
"area": [8.516, 17.10, 3.286, 9.597, 1.221],
"population": [200.4, 143.5, 1252, 1357, 52.98] }
import pandas as pd
brics = pd.DataFrame(dict)
print(brics)
``````
Results shown in DataFrame format
• Assign the value of index.
``````# Set the index for brics
brics.index = ["BR", "RU", "IN", "CH", "SA"]
``````
• Create a DataFrame is by importing a csv file using Pandas.
``````# Import the cars.csv data: cars
``````
• Indexing DataFrames
We can use square brackets to select one column of the DataFrame:
• The single bracket with output a Pandas Series.
It can also been used to access observations (rows) from a DataFrame.
``````# Print out country column as Pandas Series
print(cars['cars_per_cap'])
``````
Pandas Series
• The double bracket will output a Pandas DataFrame.
``````# Print out country column as Pandas DataFrame
print(cars[['cars_per_cap']])
``````
Pandas DataFrame
• Data selection
`loc` is label-based, which specifies rows and columns based on their row and column labels.
`iloc` is integer index based, which specifies rows and columns by their integer index.
``````# Print out observation for Japan
print(cars.iloc[2])
# Print out observations for Australia and Egypt
print(cars.loc[['AUS', 'EG']])
``````

# Reference

[1] Python Numpy Arrays https://www.learnpython.org/en/Numpy_Arrays
[2] Python Pandas DataForms https://www.learnpython.org/en/Pandas_Basics

• 序言：七十年代末，一起剥皮案震惊了整个滨河市，随后出现的几起案子，更是在滨河造成了极大的恐慌，老刑警刘岩，带你破解...
沈念sama阅读 118,170评论 1 238
• 序言：滨河连续发生了三起死亡事件，死亡现场离奇诡异，居然都是意外死亡，警方通过查阅死者的电脑和手机，发现死者居然都...
沈念sama阅读 51,474评论 1 200
• 文/潘晓璐 我一进店门，熙熙楼的掌柜王于贵愁眉苦脸地迎上来，“玉大人，你说我怎么就摊上这事。” “怎么了？”我有些...
开封第一讲书人阅读 73,398评论 0 167
• 文/不坏的土叔 我叫张陵，是天一观的道长。 经常有香客问我，道长，这世上最难降的妖魔是什么？ 我笑而不...
开封第一讲书人阅读 36,051评论 0 127
• 正文 为了忘掉前任，我火速办了婚礼，结果婚礼上，老公的妹妹穿的比我还像新娘。我一直安慰自己，他们只是感情好，可当我...
茶点故事阅读 42,849评论 1 205
• 文/花漫 我一把揭开白布。 她就那样静静地躺着，像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上，一...
开封第一讲书人阅读 35,584评论 1 124
• 那天，我揣着相机与录音，去河边找鬼。 笑死，一个胖子当着我的面吹牛，可吹牛的内容都是我干的。 我是一名探鬼主播，决...
沈念sama阅读 27,553评论 2 206
• 文/苍兰香墨 我猛地睁开眼，长吁一口气：“原来是场噩梦啊……” “哼！你这毒妇竟也来了？” 一声冷哼从身侧响起，我...
开封第一讲书人阅读 26,693评论 0 119
• 想象着我的养父在大火中拼命挣扎，窒息，最后皮肤化为焦炭。我心中就已经是抑制不住地欢快，这就叫做以其人之道，还治其人...
爱写小说的胖达阅读 25,658评论 5 172
• 序言：老挝万荣一对情侣失踪，失踪者是张志新（化名）和其女友刘颖，没想到半个月后，有当地人在树林里发现了一具尸体，经...
沈念sama阅读 29,717评论 0 178
• 正文 独居荒郊野岭守林人离奇死亡，尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
茶点故事阅读 26,965评论 1 167
• 正文 我和宋清朗相恋三年，在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
茶点故事阅读 28,219评论 1 177
• 白月光回国，霸总把我这个替身辞退。还一脸阴沉的警告我。[不要出现在思思面前， 不然我有一百种方法让你生不如死。]我...
爱写小说的胖达阅读 22,537评论 0 25
• 序言：一个原本活蹦乱跳的男人离奇死亡，死状恐怖，灵堂内的尸体忽然破棺而出，到底是诈尸还是另有隐情，我是刑警宁泽，带...
沈念sama阅读 25,126评论 2 163
• 正文 年R本政府宣布，位于F岛的核电站，受9级特大地震影响，放射性物质发生泄漏。R本人自食恶果不足惜，却给世界环境...
茶点故事阅读 28,968评论 3 172
• 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹，春花似锦、人声如沸。这庄子的主人今日做“春日...
开封第一讲书人阅读 23,960评论 0 4
• 文/苍兰香墨 我抬头看了看天上的太阳。三九已至，却和暖如春，着一层夹袄步出监牢的瞬间，已是汗流浃背。 一阵脚步声响...
开封第一讲书人阅读 24,029评论 0 113
• 我被黑心中介骗来泰国打工， 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留，地道东北人。 一个月前我还...
沈念sama阅读 30,163评论 2 188
• 正文 我出身青楼，却偏偏与公主长得像，于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子，可洞房花烛夜当晚...
茶点故事阅读 30,592评论 2 188