(Boolan)C++设计模式 <十二> ——命令模式(Command)和访问器(Visitor)

“行为变化”模式

在组建的构建过程中,组建行为的变化经常导致组建本身剧烈的变化。“行为变化”模式将组建的行为和组建本身进行解耦,从而主持组件的变化,实现两者之间的松耦合。

  • 典型模式
    • Command
    • Visitor

命令模式Command

将一个请求(行为)封装为对象,从而使你可用不同的请求,对客户进行参数化;对请求排队或记录请求日志以及支持可撤销的操作。
——《设计模式》GoF

  • 动机
    在软件构建构成中,“行为请求者”与“行为实现者”通常呈现一种“紧耦合”。但在某些场合——比如需要对行为进行“记录、撤销(undo)、事务”邓程澧,这种无法抵御变化的紧耦合是不合适的。
#include <iostream>
#include <vector>
#include <string>
using namespace std;


class Command
{
public:
    virtual void execute() = 0;
};

class ConcreteCommand1 : public Command
{
    string arg;
public:
    ConcreteCommand1(const string & a) : arg(a) {}
    void execute() override
    {
        cout<< "#1 process..."<<arg<<endl;
    }
};

class ConcreteCommand2 : public Command
{
    string arg;
public:
    ConcreteCommand2(const string & a) : arg(a) {}
    void execute() override
    {
        cout<< "#2 process..."<<arg<<endl;
    }
};
        
        
class MacroCommand : public Command
{
    vector<Command*> commands;
public:
    void addCommand(Command *c) { commands.push_back(c); }
    void execute() override
    {
        for (auto &c : commands)
        {
            c->execute();
        }
    }
};
        

        
int main()
{

    ConcreteCommand1 command1(receiver, "Arg ###");
    ConcreteCommand2 command2(receiver, "Arg $$$");
    
    MacroCommand macro;
    macro.addCommand(&command1);
    macro.addCommand(&command2);
    
    macro.execute();

}

Command有一个execute的虚函数,派生了一系列的子类,由单一的命令,也有宏命令(用到了Composite模式,继承自Command,动态遍历了容器中的Command命令,以实现了一组命令的组合)。在使用层面,我们拿到的是对象,但是表征的却是行为。可以通过一些容器的存放对象的模式,来实现出类似于剪切、撤销等操作,只需要将对象弹出或者压入即可。

Command的UML

要点总结

  • Command模式的根本目的在于“行为请求者”与“行为实现者”解耦,在面向对象的语言中,常见的实现手段是“将行为抽象为对象”
  • 实现Command接口的具体命令对象ConcreteCommand有时候根据需要可能会保存一些额外的状态信息。通过使用Composite模式,可以将多个“命令”封装为一个“符合命令”MacroCommand
    Command模式与C++中的函数对像有些类似。但两者定义行为接口的规范有所区别:Command以面向对象中的“接口-实现”来定义行为接口规范,更严格,但有性能损失;C++函数对象以函数签名来定义行为接口规范,更灵活,性能能高。

访问者Visitor

表示一个作用与某对像结构中的各元素的操作。使得可以在不改变(稳定)各元素的类的前提下定义(扩展)作用于这些元素的新操作(变化)。
——《设计模式》GoF

  • 动机
    在软件构建的过程中,由于需求的改变,某些类层次结构中常常需要增加新的行为(方法)。如果直接在类中做这样的更改,将会给子类带来很繁重的变更负担,甚至破坏原有设计。
#include <iostream>
using namespace std;

class Visitor;


class Element
{
public:
    virtual void accept(Visitor& visitor) = 0; //第一次多态辨析

    virtual ~Element(){}
};

class ElementA : public Element
{
public:
    void accept(Visitor &visitor) override {
        visitor.visitElementA(*this);
    }
    

};

class ElementB : public Element
{
public:
    void accept(Visitor &visitor) override {
        visitor.visitElementB(*this); //第二次多态辨析
    }

};


class Visitor{
public:
    virtual void visitElementA(ElementA& element) = 0;
    virtual void visitElementB(ElementB& element) = 0;
    
    virtual ~Visitor(){}
};

//==================================

//扩展1
class Visitor1 : public Visitor{
public:
    void visitElementA(ElementA& element) override{
        cout << "Visitor1 is processing ElementA" << endl;
    }
        
    void visitElementB(ElementB& element) override{
        cout << "Visitor1 is processing ElementB" << endl;
    }
};
     
//扩展2
class Visitor2 : public Visitor{
public:
    void visitElementA(ElementA& element) override{
        cout << "Visitor2 is processing ElementA" << endl;
    }
    
    void visitElementB(ElementB& element) override{
        cout << "Visitor2 is processing ElementB" << endl;
    }
};
        
    

        
int main()
{
    Visitor2 visitor;
    ElementB elementB;
    elementB.accept(visitor);// double dispatch
    
    ElementA elementA;
    elementA.accept(visitor);

    
    return 0;
}

当父类增加了新的操作,那么修改的代价极高,后续派生出来的所以子类都需要更改。违背了开闭原则。
应该是扩展新的需求该不是在修改的情况下添加新的操作。

#include <iostream>
using namespace std;

class Visitor;


class Element
{
public:
    virtual void Func1() = 0;
    
    virtual void Func2(int data)=0;
    virtual void Func3(int data)=0;
    //...
    
    virtual ~Element(){}
};

class ElementA : public Element
{
public:
    void Func1() override{
        //...
    }
    
    void Func2(int data) override{
        //...
    }
    
};

class ElementB : public Element
{
public:
    void Func1() override{
        //***
    }
    
    void Func2(int data) override {
        //***
    }
    
};
Visitor 的UML

Visitor的缺点:对于Visitor来说,不仅仅需要Vistor和Element需要稳定,同时也需要ConcreteElementA和ConcreteElement这两个类也保持稳定,而这个条件是很难保证的。如果新增加了Element的子类,那么Visitor的基类就需要改变,同时也会牵扯到ConcreteVisitor。所以这就是Vistor的缺点。Visitor的条件很难达成。

要点总结

  • Vistor模式通过所谓的双重分发(double dispatch)来实现现在不更改(不添加新的操作-编译时)Element类层次结构的前提下,在运行时透明地为类层次结构上的各个类动态添加新的操作(支持变化)。
  • 所谓双重分发即Vistor模式中包括了两个多态分发(注意其中的多态机制):第一个accept方法的多态解析;第二个visitElementX方法的多态解析。
  • Visitor模式最大的缺点在于扩展类层次结构(增添新的Element子类),会导致Visitor类的改变。因此Visitor模式适用于“Element类层次结构稳定,而其中的操作却进场面临频繁改动”。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 158,847评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,208评论 1 292
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,587评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,942评论 0 205
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,332评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,587评论 1 218
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,853评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,568评论 0 198
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,273评论 1 242
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,542评论 2 246
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,033评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,373评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,031评论 3 236
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,073评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,830评论 0 195
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,628评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,537评论 2 269

推荐阅读更多精彩内容