通俗理解数字签名,数字证书和https

前言

最近在开发关于PDF合同文档电子签章的功能,大概意思就是在一份PDF合同上签名,盖章,使其具有法律效应。签章有法律效应必须满足两个条件:

  • 能够证明签名,盖章者是谁,无法抵赖
  • PDF合同在签章后不能被更改

在纸质合同中,由于签名字迹的不可复制性,盖章的唯一性以及纸质合同对涂改的防范措施(比如金额用大写)可以保证上述两点,从而具备法律效应,那么PDF合同如何保障呢?两个重要的概念就是数字签名和数字证书。这项技术广泛运用于文件认证,数据传输等。
为了弄懂这些,我花了2天时间从加密算法开始,到数字签名和CA证书,最后再重新认识下https的原理。

非对称加密

两种算法:对称加密和非对称加密。

  • 对称加密:加密和解密的密钥一样,比如用123加密就是用123解密,但是实际中密码都是普通数据在互联网传输的,这样一点密码被中间人截取并破解,加密直接被攻破。
  • 非对称加密:把密钥分为公钥和私钥,公钥是公开的所有人都可以认领,私钥是保密的只有一个人知道。假设A要发送一封Email给B,他不想让任何其他人在传输中看到Email的内容,做法就是使用B的公钥对Email加密,只有B的私钥能够解密(B的私钥唯一性保证信件不会泄露)。
    某天出意外了,有黑客冒充A给B发送Email,并且也用B的公钥加密,导致B无法区分这封邮件是否来自A。怎么办?此时A可以用自己的私钥加密,那么B收到邮件后如果用A的公钥可以解密邮件,那么证明这封信肯定来自于A。
    OK,通过这个例子我想你们基本明白非对称加密了!我总结了下面几点:
    公钥加密:对内容本身加密,保证不被其他人看到。
    私钥加密:证明内容的来源
    公钥和私钥是配对关系,公钥加密就用私钥解密,反之亦然,用错的密钥来尝试解密会报错。

数字签名

接着聊上面发邮件的例子,假设A用自己的私钥对Email加密发送,这存在下面问题:

  • 对文件本身加密可能是个耗时过程,比如这封Email足够大,那么私钥加密整个文件以及拿到文件后的解密无疑是巨大的开销。
    数字签名可以解决这个问题:
    1.A先对这封Email执行哈希运算得到hash值简称“摘要”,取名h1
    2.然后用自己私钥对摘要加密,生成的东西叫“数字签名”
    3.把数字签名加在Email正文后面,一起发送给B
    (当然,为了防止邮件被窃听你可以用继续公钥加密,这个不属于数字签名范畴)
    4.B收到邮件后用A的公钥对数字签名解密,成功则代表Email确实来自A,失败说明有人冒充
    5.B对邮件正文执行哈希运算得到hash值,取名h2
    6.B 会对比第4步数字签名的hash值h1和自己运算得到的h2,一致则说明邮件未被篡改。


    图1.png

其实就是利用算法(不一定是非对称算法)对原文hash值加密,然后附着到原文的一段数据。数字签名的作用就是验证数据来源以及数据完整性!解密过程则称为数字签名验证。
几点疑惑:

  1. 如果中间人同时篡改了Email正文和数字签名,那B收到邮件无法察觉啊。
    答案:数字签名的生成需要对方私钥,所以数字签名很难被伪造。万一私钥泄漏了呢,不好意思,你私钥都能弄丢了那这篇文章当我白写。(私钥绝对保密不参与传输)
  2. 公钥是公开的并且可以自行导入到电脑,如果有人比如C偷偷在B的电脑用自己公钥替换了A的公钥,然后用自己的私钥给B发送Email,这时B收到邮件其实是被C冒充的但是他无法察觉。
    答案:确实存在这种情况!解决办法就是数字证书

数字证书

上面第2点描述的安全漏洞根源就是A的公钥很容易被替换!那么数字证书是怎么生成的呢?以及如何配合数字签名工作呢?

  1. 首先A去找"证书中心"(certificate authority,简称CA),为公钥做认证。证书中心用自己的私钥,对A的公钥和一些相关信息一起加密,生成"数字证书"(Digital Certificate):


    图2.png
  2. A在邮件正文下方除了数字签名,另外加上这张数字证书


    image.png
  3. B收到Email后用CA的公钥解密这份数字证书,拿到A的公钥,然后验证数字签名,后面流程就和图1的流程一样了,不再赘述。
    几点疑惑:

  • 假设数字证书被伪造了呢?
    答案:是的,传输中数字证书有可能被篡改。因此数字证书也是经过数字签名的,上文说道数字签名的作用就是验证数据来源以及数据完整性!B收到邮件后可以先验证这份数字证书的可靠性,通过后再验证数字签名。
  • 要是有1万个人要给B发邮件,难道B要保存1万份不同的CA公钥吗?
    答案:不需要,CA认证中心给可以给B一份“根证书”,里面存储CA公钥来验证所有CA分中心颁发的数字证书。CA中心是分叉树结构,类似于公安部->省公安厅->市级派出所,不管A从哪个CA分支机构申请的证书,B只要预存根证书就可以验证下级证书可靠性。
  • 如何验证根证书可靠性?
    答案:无法验证。根证书是自验证证书,CA机构是获得社会绝对认可和有绝对权威的第三方机构,这一点保证了根证书的绝对可靠。如果根证书都有问题那么整个加密体系毫无意义。

举个栗子

上面一直在说虚拟场景,下文举个实际例子看看数字签名+数字证书如何验证文件的来源,以及文件的完整性。比如下载文件:我们开发中一般是服务端给文件信息加上md5,客户端下载完成后校验md5来判断文件是否损坏,这个其实就是简单的校验机制,而很多正规企业比如google都会给官方软件签署数字签名和证书,而windows已经预置了很多CA根证书:


image.png

然后看下我之前从网上下载的Chrome.exe,右键属性,通过鼠标点击一步验证:


image.png

Google Inc就是google从CA中心申请的数字证书。这样看来,这个软件确实来源于google官方,并且文件完整。接下来我干点坏事,用notepad打开这个exe文件并且篡改里面的内容(修改二进制数据,09 改为33),保存:


image.png

再看下数字签名还正常吗?


image.png

文件被篡改导致数字签名无效,数字证书没有问题。

https简单介绍

数字签名和数字证书可以用于文件,当然也能用于html网页数据。本人没有https相关开发经验,故不做深入探讨只是简单介绍下。

  • http的安全缺陷
  1. 无法验证服务端的身份
  2. 无法保证数据完整性
  3. 无法保证数据传输不被窃听

而https就是专门解决这三个问题,https使用数字签名+数字证书解决了前2个问题,很多大型网站比如baidu.com都会采用https协议,网址左侧会出现绿色加锁标识:


image.png

点击可以查看证书,另外浏览器都会内置CA根证书,来对这些网站的服务器证书进行校验。
然后,再用SSL协议对传输通道加密,保证数据传输不被窃听,这个SSL加密原理分为很多步骤不在本文讨论范围。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 158,425评论 4 361
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,058评论 1 291
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,186评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,848评论 0 204
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,249评论 3 286
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,554评论 1 216
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,830评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,536评论 0 197
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,239评论 1 241
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,505评论 2 244
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,004评论 1 258
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,346评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 32,999评论 3 235
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,060评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,821评论 0 194
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,574评论 2 271
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,480评论 2 267

推荐阅读更多精彩内容