RSA加密算法原理

  学过算法的朋友都知道,计算机中的算法其实就是数学运算。所以,再讲解RSA加密算法之前,有必要了解一下一些必备的数学知识。我们就从数学知识开始讲解。

必备数学知识

RSA加密算法中,只用到素数、互质数、指数运算、模运算等几个简单的数学知识。所以,我们也需要了解这几个概念即可。

素数

素数又称质数,指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。这个概念,我们在上初中,甚至小学的时候都学过了,这里就不再过多解释了。

互质数

百度百科上的解释是:公因数只有1的两个数,叫做互质数。;维基百科上的解释是:互质,又称互素。若N个整数的最大公因子是1,则称这N个整数互质。

  常见的互质数判断方法主要有以下几种:

两个不同的质数一定是互质数。例如,2与7、13与19。

一个质数,另一个不为它的倍数,这两个数为互质数。例如,3与10、5与 26。

相邻的两个自然数是互质数。如 15与 16。

相邻的两个奇数是互质数。如 49与 51。

较大数是质数的两个数是互质数。如97与88。

小数是质数,大数不是小数的倍数的两个数是互质数。例如 7和 16。

2和任何奇数是互质数。例如2和87。

1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。

辗转相除法。

指数运算

指数运算又称乘方计算,计算结果称为幂。nm指将n自乘m次。把nm看作乘方的结果,叫做”n的m次幂”或”n的m次方”。其中,n称为“底数”,m称为“指数”。

模运算

模运算即求余运算。“模”是“Mod”的音译。和模运算紧密相关的一个概念是“同余”。数学上,当两个整数除以同一个整数,若得相同余数,则二整数同余

两个整数a,b,若它们除以正整数m所得的余数相等,则称a,b对于模m同余,记作: a ≡ b (mod m);读作:a同余于bm,或者,ab关于模m同余。例如:26 ≡ 14 (mod 12)。

RSA加密算法

RSA加密算法简史

  RSA是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。

公钥与密钥的产生

假设Alice想要通过一个不可靠的媒体接收Bob的一条私人讯息。她可以用以下的方式来产生一个公钥和一个私钥

随意选择两个大的质数pqp不等于q,计算N=pq

根据欧拉函数,求得r = (p-1)(q-1)

选择一个小于 r 的整数 e,求得 e 关于模 r 的模反元素,命名为d。(模反元素存在,当且仅当e与r互质)

 p  q 的记录销毁。

(N,e)是公钥,(N,d)是私钥。Alice将她的公钥(N,e)传给Bob,而将她的私钥(N,d)藏起来。

加密消息

假设Bob想给Alice送一个消息m,他知道Alice产生的Ne。他使用起先与Alice约好的格式将m转换为一个小于N的整数n,比如他可以将每一个字转换为这个字的Unicode码,然后将这些数字连在一起组成一个数字。假如他的信息非常长的话,他可以将这个信息分为几段,然后将每一段转换为n。用下面这个公式他可以将n加密为c

ne≡ c (mod N)

计算c并不复杂。Bob算出c后就可以将它传递给Alice。

解密消息

Alice得到Bob的消息c后就可以利用她的密钥d来解码。她可以用以下这个公式来将c转换为n

cd≡ n (mod N)

得到n后,她可以将原来的信息m重新复原。

解码的原理是:

cd≡ ne·d(mod N)

以及ed≡ 1 (modp-1)和ed≡ 1 (modq-1)。由费马小定理可证明(因为pq是质数)

ne·d≡ n (mod p)   和  ne·d≡ n (mod q)

这说明(因为pq不同的质数,所以pq互质)

ne·d≡ n (mod pq)

签名消息

RSA也可以用来为一个消息署名。假如甲想给乙传递一个署名的消息的话,那么她可以为她的消息计算一个散列值(Message digest),然后用她的密钥(private key)加密这个散列值并将这个“署名”加在消息的后面。这个消息只有用她的公钥才能被解密。乙获得这个消息后可以用甲的公钥解密这个散列值,然后将这个数据与他自己为这个消息计算的散列值相比较。假如两者相符的话,那么他就可以知道发信人持有甲的密钥,以及这个消息在传播路径上没有被篡改过。

编程实践

  下面,开始我们的重点环节:编程实践。在开始编程前,我们通过计算,来确定公钥和密钥。

计算公钥和密钥

假设p = 3、q = 11(p,q都是素数即可。),则N = pq = 33;

r = (p-1)(q-1) = (3-1)(11-1) = 20;

根据模反元素的计算公式,我们可以得出,e·d ≡ 1 (mod 20),即e·d = 20n+1 (n为正整数);我们假设n=1,则e·d = 21。e、d为正整数,并且e与r互质,则e = 3,d = 7。(两个数交换一下也可以。)

  到这里,公钥和密钥已经确定。公钥为(N, e) = (33, 3),密钥为(N, d) = (33, 7)。

编程实现

  下面我们使用Java来实现一下加密和解密的过程。具体代码如下:

RSA算法实现:


[java] view plain copy

package security.rsa;    public class RSA {            /**      *  加密、解密算法      * @param key 公钥或密钥      * @param message 数据      * @return      */      public static long rsa(int baseNum, int key, long message){          if(baseNum < 1 || key < 1){              return 0L;          }          //加密或者解密之后的数据          long rsaMessage = 0L;                    //加密核心算法          rsaMessage = Math.round(Math.pow(message, key)) % baseNum;          return rsaMessage;      }                        public static void main(String[] args){          //基数          int baseNum = 3 * 11;          //公钥          int keyE = 3;          //密钥          int keyD = 7;          //未加密的数据          long msg = 24L;          //加密后的数据          long encodeMsg = rsa(baseNum, keyE, msg);          //解密后的数据          long decodeMsg = rsa(baseNum, keyD, encodeMsg);                    System.out.println("加密前:" + msg);          System.out.println("加密后:" + encodeMsg);          System.out.println("解密后:" + decodeMsg);                }              }  

RSA算法结果:

加密前:24

加密后:30

解密后:24

(看程序最清楚了,对于要加密的数字m, m^e%N=c, c就是加密之后的密文。c^d%N=m, 就能解密得到m)

RSA加密算法的安全性

  当p和q是一个大素数的时候,从它们的积pq去分解因子p和q,这是一个公认的数学难题。然而,虽然RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。

1994年彼得·秀尔(Peter Shor)证明一台量子计算机可以在多项式时间内进行因数分解。假如量子计算机有朝一日可以成为一种可行的技术的话,那么秀尔的算法可以淘汰RSA和相关的衍生算法。(即依赖于分解大整数困难性的加密算法)

另外,假如N的长度小于或等于256,那么用一台个人电脑在几个小时内就可以分解它的因子了。1999年,数百台电脑合作分解了一个512位长的N。1997年后开发的系统,用户应使用1024位密钥,证书认证机构应用2048位或以上。

RSA加密算法的缺点

  虽然RSA加密算法作为目前最优秀的公钥方案之一,在发表三十多年的时间里,经历了各种攻击的考验,逐渐为人们接受。但是,也不是说RSA没有任何缺点。由于没有从理论上证明破译RSA的难度与大数分解难度的等价性。所以,RSA的重大缺陷是无法从理论上把握它的保密性能如何。在实践上,RSA也有一些缺点:

产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密;

分组长度太大,为保证安全性,n 至少也要 600 bits 以上,使运算代价很高,尤其是速度较慢,。

推荐阅读更多精彩内容

  • 必备数学知识 RSA加密算法中,只用到素数、互质数、指数运算、模运算等几个简单的数学知识。所以,我们也需要了解这几...
    依然饭太稀阅读 255评论 0 0
  • 姓名:于川皓 学号:16140210089 转载自:https://baike.baidu.com/item/RS...
    道无涯_cc76阅读 1,287评论 0 1
  • 前言 RSA算法是现今使用最广泛的公钥密码算法,也是号称地球上最安全的加密算法。本文主要参考了参考资料中的文章,加...
    卖糖果的小傻嘟阅读 145评论 0 0
  • RSA是第一个比较完善的公开密钥算法,它既能用于加密,也能用于数字签名。RSA以它的三个发明者Ron Rivest...
    暗物质阅读 391评论 0 0
  • 歌舞升平的城市 寡恩薄义的街道 啖以重利的背后 弱肉强食的社会 人生于世 是为了什么? 金钱还是美色 我们只是这个...
    半生云水阅读 29评论 0 0