RocketMQ 9.CommitLog、ConsumeQueue、indexFile、offset

1.CommitLog

消息内容原文的存储文件,同Kafka一样,消息是变长的,顺序写入

生成规则:
每个文件的默认1G =1024 * 1024 * 1024,commitlog的文件名fileName,名字长度为20位,左边补零,剩余为起始偏移量;比如00000000000000000000代表了第一个文件,起始偏移量为0,文件大小为1G=1 073 741 824Byte;当这个文件满了,第二个文件名字为00000000001073741824,起始偏移量为1073741824, 消息存储的时候会顺序写入文件,当文件满了则写入下一个文件

image.png
文件的消息单元存储结构
顺序编号 字段简称 字段大小(字节) 字段含义
1 msgSize 4 代表这个消息的大小
2 MAGICCODE 4 MAGICCODE = daa320a7
3 BODY CRC 4 消息体BODY CRC 当broker重启recover时会校验
4 queueId 4 broker中队列的id
5 flag 4
6 QUEUEOFFSET 8 这个值是个自增值不是真正的consume queue的偏移量,可以代表这个consumeQueue队列或者tranStateTable队列中消息的个数,若是非事务消息或者commit事务消息,可以通过这个值查找到consumeQueue中数据,QUEUEOFFSET * 20才是偏移地址;若是PREPARED或者Rollback事务,则可以通过该值从tranStateTable中查找数据
7 PHYSICALOFFSET 8 代表消息在commitLog中的物理起始地址偏移量
8 SYSFLAG 4 指明消息是事物事物状态等消息特征,二进制为四个字节从右往左数:当4个字节均为0(值为0)时表示非事务消息;当第1个字节为1(值为1)时表示表示消息是压缩的(Compressed);当第2个字节为1(值为2)表示多消息(MultiTags);当第3个字节为1(值为4)时表示prepared消息;当第4个字节为1(值为8)时表示commit消息;当第3/4个字节均为1时(值为12)时表示rollback消息;当第3/4个字节均为0时表示非事务消息;
9 BORNTIMESTAMP 8 消息产生端(producer)的时间戳
10 BORNHOST 8 消息产生端(producer)地址(address:port)
11 STORETIMESTAMP 8 消息在broker存储时间
12 STOREHOSTADDRESS 8 消息存储到broker的地址(address:port)
13 RECONSUMETIMES 8 消息被某个订阅组重新消费了几次(订阅组之间独立计数),因为重试消息发送到了topic名字为%retry%groupName的队列queueId=0的队列中去了,成功消费一次记录为0;
14 PreparedTransaction Offset 8 表示是prepared状态的事物消息
15 messagebodyLength 4 消息体大小值
16 messagebody bodyLength 消息体内容
17 topicLength 1 topic名称内容大小
18 topic topicLength topic的内容值
19 propertiesLength 2 属性值大小
20 properties propertiesLength propertiesLength大小的属性数据

2.ConsumeQueue

image.png

ConsumeQueue中并不需要存储消息的内容,而存储的是消息在CommitLog中的offset。也就是说,ConsumeQueue其实是CommitLog的一个索引文件。

一个ConsumeQueue文件对应topic下的一个队列

image.png

image.png
ConsumeQueue是定长的结构,每1条记录固定的20个字节。很显然,Consumer消费消息的时候,要读2次:先读ConsumeQueue得到offset,再读CommitLog得到消息内容
image.png
ConsumeQueue的作用
  1. 通过broker保存的offset可以在ConsumeQueue中获取消息,从而快速的定位到commitLog的消息位置
  2. 过滤tag是也是通过遍历ConsumeQueue来实现的(先比较hash(tag)符合条件的再到consumer比较tag原文)
  3. 并且ConsumeQueue还能保存于操作系统的PageCache进行缓存提升检索性能

下面是我解析的ConsumeQueue

public class ConsumeQueueFileRead {

    public static void main(String[] args) throws IOException {
        decodeCQ(new File("D:\\00000000000000000000"));
    }

    static void decodeCQ(File consumeQueue) throws IOException {
        FileInputStream fis = new FileInputStream(consumeQueue);
        DataInputStream dis = new DataInputStream(fis);
        
        System.out.printf(" %s   %s   %s\n", "offset", "size", "tag");
        while (true) {
            long offset = dis.readLong();
            int size = dis.readInt();
            long tag = dis.readLong();

            if (size == 0) {
                break;
            }
            System.out.printf(" %d     %d     %d\n", offset, size, tag);
        }
        fis.close();
    }
}
image.png

3.indexFile

如果我们需要根据消息ID,来查找消息,consumequeue 中没有存储消息ID,如果不采取其他措施,又得遍历 commitlog文件了,indexFile就是为了解决这个问题的文件

image.png

由于必须以msgId或者生产者指定的消息key作为索引key,所以其结构更复杂一些,分为三部分:文件头indexHeader,一系列槽位slots,真正的索引数据index


image.png
image.png
image.png

中可以看出,indexFile结构与hash表很相似,固定数量的slot组成数组,每个slot对应一条index链,index之间通过链表方式组织在一起。slot的值对应当前slot下最新的那个index的序号,index中存储了当前slot下、当前index的前一个index序号,这就把slot下的所有index链起来了

由于indexHeader,slot,index都是固定大小,所以:

       公式1:第n个slot在indexFile中的起始位置是这样:40+(n-1)*4
       公式2: 第s个index在indexFile中的起始位置是这样:40+5000000*4+(s-1)*20

查询的流程:查询的传入值除了key外,还包含一个时间起始值以及截止值

4.offset

offset就是message queue的下标(和commitLog的offset不是一回事,这个offset是ConsumeQueue文件的下标/行数),一条消息进入队列下标就会+1

offset持久化

类型(父类是OffsetStore):

本地文件类型
DefaultMQPushConsumer的BROADCASTING模式,各个Consumer没有互相干扰,使用LoclaFileOffsetStore,把Offset存储在Consumer本地

Broker代存储类型
DefaultMQPushConsumer的CLUSTERING模式,由Broker端存储和控制Offset的值,使用RemoteBrokerOffsetStore

image.png
{
    "offsetTable":{
        "my-topic-filter@filter_consumer_group_name":{0:6,1:8,2:5,3:6
        },
        "%RETRY%filter_consumer_group_name@filter_consumer_group_name":{0:0
        },
        "my-topic-filter@woodie":{0:0,1:2,2:0,3:0
        },
        "%RETRY%woodie@woodie":{0:0
        }
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 158,233评论 4 360
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,013评论 1 291
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,030评论 0 241
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,827评论 0 204
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,221评论 3 286
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,542评论 1 216
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,814评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,513评论 0 198
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,225评论 1 241
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,497评论 2 244
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 31,998评论 1 258
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,342评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 32,986评论 3 235
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,055评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,812评论 0 194
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,560评论 2 271
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,461评论 2 266