Python科学计算利器——SymPy库

本文讲述的核心库:sympy
官方在线文档:http://docs.sympy.org/0.7.1/guide.html#guide

sympy是一个Python的科学计算库,用一套强大的符号计算体系完成诸如多项式求值、求极限、解方程、求积分、微分方程、级数展开、矩阵运算等等计算问题。虽然Matlab的类似科学计算能力也很强大,但是Python以其语法简单、易上手、异常丰富的三方库生态,个人认为可以更优雅地解决日常遇到的各种计算问题。

如果你遇到了一个难题,不要犹豫,来找Python,它几乎不会让你失望的。写本文的初衷也是妹子在做金融作业的时候遇到大量的计算,用普通计算器算真是工程量浩大,所以找到sympy这么个库,写代码帮忙辅助计算一下,然后在这里写博客记录下来。

安装sympy库

pip install sympy

常用的sympy内置符号

虚数单位i

In [13]: import sympy

In [14]: sympy.I
Out[14]: I

In [15]: sympy.I ** 2
Out[15]: -1

# 求-1的平方根
In [16]: sympy.sqrt(-1)
Out[16]: I

注:本文后面的示例都省略导包语句:import sympy

自然对数的底e

In [18]: sympy.E
Out[18]: E

# 求对数
In [20]: sympy.log(sympy.E)
Out[20]: 1

无穷大oo

In [26]: 1/sympy.oo
Out[26]: 0

In [27]: 1 + sympy.oo
Out[27]: oo

圆周率pi

In [60]: sympy.pi
Out[60]: pi

In [61]: sympy.sin(sympy.pi/2)
Out[61]: 1

用sympy进行初等运算

Python 2.x中用除号/做两个整数的除法,实际上是整除运算,为了防止这种情况的发生,避免不必要的麻烦,下文的所有示例一开始都加上一句:from __future__ import division,这个时候除号/本身就变成了真实除法,而//才是整除,比如:

# 导入division包之前
In [1]: 1/2
Out[1]: 0

In [2]: from __future__ import division

# 导入division包之后
In [3]: 1/2
Out[3]: 0.5

In [4]: 1//2
Out[4]: 0

求对数

# 自然对数
In [10]: sympy.log(sympy.E)
Out[10]: 1

In [11]: sympy.log(sympy.E ** 3)
Out[11]: 3

# 以10为底1000的对数
In [12]: sympy.log(1000,10)
Out[12]: 3

求平方根

In [13]: sympy.sqrt(4)
Out[13]: 2

In [14]: sympy.sqrt(-1)
Out[14]: I

求n次方根

# 求8的3次方根
In [15]: sympy.root(8,3)
Out[15]: 2

求k次方

In [21]: 2 ** 3
Out[21]: 8

In [22]: 16 ** (1/2)
Out[22]: 4.0

求阶乘

In [35]:  sympy.factorial(4)
Out[35]: 24

求三角函数

sin函数为例:

In [86]: sympy.sin(sympy.pi)
Out[86]: 0

In [87]: sympy.sin(sympy.pi/2)
Out[87]: 1

表达式与表达式求值

sympy可以用一套符号系统来表示一个表达式,如函数、多项式等,并且可以进行求值,比如:

# 首先定义x为一个符号,表示一个变量
In [96]: x = sympy.Symbol('x')

In [97]: fx = 2*x + 1

# 可以看到fx是一个sympy.core.add.Add类型的对象,也就是一个表达式
In [98]: type(fx)
Out[98]: sympy.core.add.Add

# 用evalf函数,传入变量的值,对表达式进行求值
In [101]: fx.evalf(subs={x:2})
Out[101]: 5.00000000000000

还支持多元表达式:

In [102]: x,y = sympy.symbols('x y')

In [103]: f = 2 * x + y

# 以字典的形式传入多个变量的值
In [104]: f.evalf(subs = {x:1,y:2})
Out[104]: 4.00000000000000

# 如果只传入一个变量的值,则原本输出原来的表达式
In [105]: f.evalf(subs = {x:1})
Out[105]: 2.0*x + y

用sympy解方程(组)

使用sympy.solve函数解方程,该函数通常传入两个参数,第1个参数是方程的表达式(把方程所有的项移到等号的同一边形成的式子),第2个参数是方程中的未知数。函数的返回值是一个列表,代表方程的所有根(可能为复数根)。

解最简单的方程

比如下面我们来求两个方程:

# 首先定义 `x`为一个符号,代表一个未知数
In [24]: x = sympy.Symbol('x')

# 解方程:x - 1 = 0
In [25]: sympy.solve(x - 1,x)
Out[25]: [1]

# 解方程:x ^ 2 - 1 = 0
In [26]: sympy.solve(x ** 2 - 1,x)
Out[26]: [-1, 1]

# 解方程:x ^ 2 + 1 = 0
In [27]: sympy.solve(x ** 2 + 1,x)
Out[27]: [-I, I]

把函数式赋给一个变量

有时候为了书写起来简洁,可以把一个函数式起个名字,比如:

In [30]: x = sympy.Symbol('x')

In [31]: f = x + 1

In [32]: sympy.solve(f,x)
Out[32]: [-1]

解方程组

比如要解这么个二元一次方程组:


代码如下:

# 一次性定义多个符号
In [28]: x,y = sympy.symbols('x y')

In [29]: sympy.solve([x + y - 1,x - y -3],[x,y])
Out[29]: {x: 2, y: -1}

计算求和式

计算求和式可以使用sympy.summation函数,其函数原型为:sympy.summation(f, *symbols, **kwargs)

话不多少,举个栗子,比如求下面这个求和式子的值:


我们用初中的知识可以知道,这个式子的结果为:5050 * 2 = 10100

下面用代码来求:

In [37]: n = sympy.Symbol('n')

In [38]: sympy.summation(2 * n,(n,1,100))
Out[38]: 10100

可见结果是正确的。

如果sympy.summation函数无法计算出具体的结果,那么会返回求和表达式。

解带有求和式的方程

比如求这么一个方程:


代码如下:

In [43]: x = sympy.Symbol('x')

In [44]: i = sympy.Symbol('i',integer = True)

In [46]: f =  sympy.summation(x,(i,1,5)) + 10 * x - 15

In [47]: sympy.solve(f,x)
Out[47]: [1]

求极限

求极限用sympy.limit函数,其函数文档如下:

Signature: sympy.limit(e, z, z0, dir='+')
Docstring:
Compute the limit of e(z) at the point z0.

z0 can be any expression, including oo and -oo.

For dir="+" (default) it calculates the limit from the right
(z->z0+) and for dir="-" the limit from the left (z->z0-).  For infinite
z0 (oo or -oo), the dir argument is determined from the direction
of the infinity (i.e., dir="-" for oo).

函数文档中已经说得很清楚了,下面用代码示例来求几个极限。

如果学过微积分,就会知道微积分中有3个重要的极限:




下面就用sympy.limit函数来分别求这3个极限:

In [53]: x = sympy.Symbol('x')

In [54]: f1 = sympy.sin(x)/x

In [55]: sympy.limit(f1,x,0)
Out[55]: 1

In [56]: f2 = (1+x)**(1/x)

In [57]: sympy.limit(f2,x,0)
Out[57]: E

In [58]: f3 = (1+1/x)**x

In [59]: sympy.limit(f3,x,sympy.oo)
Out[59]: E

可见三个极限的计算结果都完全正确。

求导

求导使用sympy.diff函数,传入2个参数:函数表达式和变量名,举例如下:

In [63]: x = sympy.Symbol('x')

In [64]: f = x ** 2 + 2 * x + 1

In [65]: sympy.diff(f,x)
Out[65]: 2*x + 2

In [66]: f2 = sympy.sin(x)

In [67]: sympy.diff(f2,x)
Out[67]: cos(x)

# 多元函数求偏导
In [68]: y = sympy.Symbol('y')

In [70]: f3 = x**2 + 2*x + y**3

In [71]: sympy.diff(f3,x)
Out[71]: 2*x + 2

In [72]: sympy.diff(f3,y)
Out[72]: 3*y**2

求定积分

使用sympy.integrate函数求定积分,其功能比较复杂,非常强大,下面仅仅举几个比较简单的例子。

先来求一个最简单的积分:


牛顿-莱布尼兹公式可以立马口算出上面这个式子的结果是1,用代码计算如下:

n [74]: x = sympy.Symbol('x')

n [75]: f = 2 * x

# 传入函数表达式和积分变量、积分下限、上限
n [76]: sympy.integrate(f,(x,0,1))
ut[76]: 1

下面来算一个复杂一点的多重积分:



其中:


我们通过口算可以求出f(x)

所以:


下面用代码来计算上述过程:

In [82]: t,x = sympy.symbols('t x')

In [83]: f = 2 * t

In [84]: g = sympy.integrate(f,(t,0,x))

In [85]: sympy.integrate(g,(x,0,3))
Out[85]: 9

求不定积分

同样也是使用sympy.integrate函数求不定积分,下面仅仅举几个比较简单的例子。

比如求下面这个不定积分:


通过观察我们知道它的结果是:


下面用代码来计算这个不定积分的结果:

In [79]: x = sympy.Symbol('x')

In [80]: f = sympy.E ** x + 2 * x

In [81]: sympy.integrate(f,x)
Out[81]: x**2 + exp(x)

总结

从上面的一系列计算可以看出,sympy是个非常强大的科学计算库,本文所讲到的用法仅仅是它强大功能的冰山一角,还需以后在实际使用中进一步发掘。

本文所有较为复杂的数学公式都是先在MS Word的公式编辑器中编辑完之后截图到这里的。

推荐阅读更多精彩内容

  • Android 自定义View的各种姿势1 Activity的显示之ViewRootImpl详解 Activity...
    passiontim阅读 127,676评论 18 546
  • 第二章 反向传播算法如何工作的? 在上一章,我们看到了神经网络如何使用梯度下降算法来学习他们自身的权重和偏差。但是...
    mayu8758阅读 53评论 0 0
  • # 第二章 反向传播算法如何工作的? 在上一章,我们看到了神经网络如何使用梯度下降算法来学习他们自身的权重和偏差。...
    mayu8758阅读 92评论 0 0
  • Neil Zhu,简书ID Not_GOD,University AI 创始人 & Chief Scientist...
    朱小虎XiaohuZhu阅读 4,847评论 0 18
  • 作品:罗马记忆房间思维导图 作者:李梓琦 日期:2017年5月13日 谢谢你...
    娜琦琦阅读 68评论 2 4