王强(高一)个性化辅导方案2017-10-18 优胜教育学员姓名:王强       年级:高一          总课时数:               辅导教师:张老师   辅导科目: 数学   辅导时间: 一、学习目标:1、认识初高中数学学习的特点和差异2、了解高中数学的考法3、了解高中数学的学习策略和学习方法 二、学习重点:1、初高中数学知识差异与学法差异2、针对高中数学的特点与考法,培养适合高中数学的学习方法、养成良好的学习习惯。 三、重点讲解:高中数学的特点是:注重抽象思维,内容庞杂、知识难度大。高中教材不再像初中教材那样贴近生活,生动形象,知识容量也更为紧密。客观的说,初高中知识之间存在断层,正是由于这种断层造成很多同学难以在较短时间内适应高中数学的学习。 (一)高中数学教材分析高中数学课程分为必修和选修。必修课程由5个模块(5本书)构成;选修课程有4个系列,其中系列1、系列2由若干模块构成(系列1两本书、系列2三本书),系列3、系列4由若干专题组成。内容涉及初等函数、数列、概率与统计、算法、平面解析几何、立体几何等等。进入高中,我们首先学习的是《必修1》模块,我们应先对这一模块有一个大体的了解。《必修1》模块由两章构成,分别是:第一章:集合第二章:函数如何理解集合呢?集合是一种数学语言,我们要能够使用最基本的集合语言表示有关的数学对象,提高我们运用数学语言进行交流的能力。在初中学习函数的基础上,我们还要进一步学习函数,只不过高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,在初中一次函数、二次函数、反比例函数的基础上,我们还将学习指数函数、对数函数、幂函数这些新的函数类型,而函数的思想方法将贯穿高中数学的始终。(二)高中数学与初中数学特点的变化1、数学语言在抽象程度上的突变。初中的数学主要是以形象、通俗的语言方式进行表达。而高中数学一开始即在初中学习的“函数”的基础上触及抽象的“集合语言”。集合作为数学的基本语言可以简洁地表示数学对象,对刚步入高中的同学来说,也是抽象的。而后续的几何部分也削弱了直观性而突出了抽象性和空间的想象能力。这就是说,思维要从初中的直观、经验型向抽象、理论型过渡。2、思维方法向理性层次跃迁。高一的同学产生数学学习障碍的一个原因是高中数学的思维方法与初中阶段大不相同。初中阶段,很多老师将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么,即使是解答思维非常灵活的平面几何问题,也对线段相等、角相等……分别确定了各自的思维套路。因此,同学们在初中学习中习惯于这种机械的、便于操作的定势方式,而高中数学在思维形式上发生了很大的变化,同学们一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证型思维。3、知识内容剧增初中数学知识少、浅、难度低、知识面窄。高中数学知识广泛,将对初中的数学知识进行推广和引申,也是对初中数学知识的完善。4、综合性增强,学科间知识相互渗透,相互为用,加深了学习的难度。5、系统性增强。由于高中教材的理论性增强,常以某些基础理论为纲,根据一定的逻辑,把基本的概念、基本原理、基本方法联结在一起,构成一个完整的知识体系。前后知识的关联是其中一个表现。另外,知识结构的形成是另一个表现,因此高中教材知识的结构化明显升级。如函数,初中只简单地介绍一次、二次、反比例、正比例函数,对函数的性质很少研究,而高中的函数是一个大的知识体系。函数的定义域、值域、解析式、性质等是一个小系统;指数函数、对数函数、三角函数、二次函数也是一个小系统;函数图象也是一个小系统等等。(三)给孩子的建议1、改掉“依赖”的习惯许多同学进入高中后,还像在初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动权。表现在不订计划,坐等上课,对老师课上要讲的内容不了解,上课忙于记笔记,没听到“门道”,不会巩固所学的知识。——主动性不好是同学中普遍存在的问题。高中仅做听话的孩子是不够的,只知做作业也是绝对不够的;高中老师讲的话也不少,但是谁该干些什么,老师并不一一具体指明。因此,高中新生必须提高学习的自主性。准备向将来的大学生的学习方法过渡。2、运算一定要过关学习数学离不开运算,初中老师往往一步一步在黑板上演算。到了高中,因时间有限,运算量大,老师常把计算过程留给同学们,这就要求同学们多动脑,勤动手,不仅要能笔算,而且还要能口算,心算和估算,对复杂运算,要有耐心,掌握算理,注重简便方法。许多学生由于运算能力低,致使数学成绩难以提高,但他们总归咎于“粗心”,思想上仍不重视。我们在高一时就要重视对自己运算能力的培养。3、题目贵“精”,不贵“多”有的同学认为,要想学好数学,只要多做题,功到自然成。其实不然。一般说做的题太少,很多熟能生巧的问题就会无从谈起。因此,应该适当地多做题。但是,只顾钻入题海,堆积题目,在考试中一般也是难有作为的。做题的效率要高。做题的目的在于检查你所学的知识、方法是否已掌握好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习。高中数学学习是初中数学学习的拓展和深化。为了帮助同学们顺利地从初中数学过渡到高中数学的学习,老师将在后续课程中对高中数学部分将要用到的一些初中数学知识进行深化和补充,并在此基础上为同学们揭开高中数学知识内容的帷幕   (四)具体课时安排衔接内容  7个课时1、立方和与差的公式初中已删去不讲,而运算能力是学好高中数学必须具备的能力之一,以上的公式高中的运算还在用,属于高中数学的基本公式。2、因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。3、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。比如用定义证明函数的单调性,不等式中比较大小以及证明等等。4、初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。高中学生学习了导数后,对三次函数求导后,很多问题都转化为二次函数问题。5、二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。这里体现了高中数学思想中的函数与方程的思想。6、图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。数学运算实质上是一种变换,代数变换就是我们上面说的乘法公式,分式通分等等为基础。几何变换就是这里有关对称,平移,旋转等等。7、含有参数的函数、方程、不等式,初中不作要求,只作定量研究。而高中这部分内容视为重难点。方程、不等式、函数的综合考查常成为高考综合题。所以有必要把初中所学的一次函数,反比例函数等等进行系统的归纳总结达到含有参数学生也能理解掌握的程度。注:本教学计划会根据具体情况进行调整。

96
Dreamer荣
2017.10.19 17:25* 字数 0
图片发自简书App


图片发自简书App
日记本