机器学习(10)——线性SVM

支持向量机 Support vecor machine,SVM)本身是一个二元分类算法,是对感知器算法模型的一种扩展,现在的SVM算法支持线性分类和非线性分类的分类应用,并且也能够直接将SVM应用于回归应用中,同时通过OvR或者OVO的方式我们也可以将SWM应用在多元分类领域中。在不考虑集成学习算法,不考虑特定的数据集的时候,在分类算法中SVM可以说是特别优秀的。

算法思想

在感知器模型中,算法是在数据中找出一个划分超平面,让尽可能多的数据分布在这个平面的两侧,从而达到分类的效果,但是在实际数据中这个符合我们要求的超平面是可能存在多个的。如下图所示:

在感知器模型中,我们可以找到多个可以分类的超平面讲数据分开,并且优化时希望所有的点都离超平面尽可能的远,但是实际上离超平面足够远的点基本上都是被正确分类的,所以这个是没有意义的;反而比较关心那些离超平面很近的点,这些点比较容易分错。所以说我们只要让离超平面比较近的点尽可能的远离这个超平面,那么我们的模型分类效果应该就会比较不错喽。SⅥM其实就是这个思想。

举个例子简单介绍一下svm算法的几个基本概念,参考知乎作者简之的回答。他通过简单明了的故事讲述了各个概念的生动比喻,这里就不在这里累述了,有兴趣的可以参照网址:<u>https://www.zhihu.com/question/21094489。</u>
线性可分(Linearly Separable):在数据集中,如果可以找出一个超平面,将两组数据分开,那么这个数据集叫做线性可分数据。
线性不可分( Linear Inseparable):在数据集中,没法找出一个超平面,能够将两组数据分开,那么这个数据集就叫做线性不可分数据。
分割超平面( Separating Hyperplane):将数据集分割开来的直线/平面叫做分割超平面。
间隔( Margin):数据点到分割超平面的距离称为间隔。
支持向量( Support Vector):离分割超平面最近的那些点叫做支持向量。如下如:分别用红蓝标记的点就为支持向量点。

线性可分svm

SVM的解决问题的思路是找到离超平面的最近点,通过其约束条件求出最优解。如下图所示:


支持向量满足函数:

支持向量点到超平面的距离:

我们解题的思路是:让所有分类的点各自在支持向量的两边,同时要求尽量使得支持向量远离超平面,优化问题可以用数学公式可以表示如下:

以上优化问题可以转化为:

image.png

可以转化为求损失函数J(w)的最小值,如下表示:

以上问题可以用前面讲的KKT条件求解:

求解过程如下:

引入拉格朗日乘子之后,优化目标变成了:

根据朗格朗日对偶特性,将该优化目标转化为等价的对偶问题来解决,从而优化目标变成了:

对于优化目标而言,可以先求w和b的最小值,然后再求解拉格朗日乘额最大值。求极小值,我们以前学过,可以通过求各自的偏导让其各自为零,可以求得参数。

将求得的参数带入优化函数L(W,b,β)中,得到只关于β的函数L(β):

求解过程如下:

通过对W、b极小化后,我们最终得到的优化函数只和β有关,所以此时我们可以直接极大化我们的优化函数,得到β的值,从而可以最终得到w和b的值。


以上β的求解可以用后面学的SMO算法进行求解,
设存在最优解β;根据W、b和β的关系,可以分别计算出对应的W值和b值般使用所有支持向量的计算均值来作为实际的b值,求得解为:

最终可以求得svm的分类器模型。

svm算法流程

输入线性可分的m个样本数据{(x1y1)、(x2y2)…,(xmym)},其中x为n维的特征向量,y为二元输出,取值为+1或者-1;svm模型输出为参数w、b以及分类决策函数。步骤如下:

(1) 构造约束优化问题;


(2) 使用SMO算法求出上式优化中对应的最优解β*;
(3) 找出所有的支持向量集合S
(4) 更新参数W、b的值;

(5)构造最终分类器:

image.png

小结

(1)要求数据必须是线性可分的;
(2)纯线性可分的SVM模型对于异常数据的预测可能会不太准
(3)对于线性可分的数据,SVM分类器的效果毛非常不错

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 158,117评论 4 360
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 66,963评论 1 290
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 107,897评论 0 240
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,805评论 0 203
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,208评论 3 286
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,535评论 1 216
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,797评论 2 311
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,493评论 0 197
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,215评论 1 241
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,477评论 2 244
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 31,988评论 1 258
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,325评论 2 252
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 32,971评论 3 235
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,055评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,807评论 0 194
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,544评论 2 271
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,455评论 2 266

推荐阅读更多精彩内容