图的深度优先遍历和广度优先遍历

图的遍历

  • 图的遍历是和树的遍历类似,我们希望从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次,这一过程就叫做图的遍历(Traversing Graph)。
  • 重复访问顶点就不叫做遍历了。
  • 关于图的基本概念,理论知识不想说了。太繁琐~
  • 直接上图,这个应该都能看懂。
图的深度优先遍历.png
  • 左图是一个,右图是根据图生成的矩阵
[v0][v1]代表v0顶点到v1顶点的路径权重为10
可以看见右图,权重为0的都是顶点自己到自己,这根本就没有意义。
而无限大符号表示到达不了,比如[v0][v2]。可以看左图,v0只能到达v1和v5,到不了v2。

第一幅图的矩阵可以看到有9个顶点,组成二维数组

我们可以先生成这个矩阵:

public class Graph {
    
    private int vertexSize; // 顶点数量
    private int[] vertexs; // 顶点数组
    private int[][] matrix; // 包含所有顶点的数组
    // 路径权重
    // 0意味着顶点自己到自己,无意义
    // MAX_WEIGHT也意味着到目的顶点不可达
    private static final int MAX_WEIGHT = 1000;
    
    public Graph(int vertextSize) {
        this.vertexSize = vertextSize;
        matrix = new int[vertextSize][vertextSize];
        vertexs = new int[vertextSize];
        for (int i = 0; i < vertextSize; i++) {
            vertexs[i] = i;
        }
    }
    
    public static void main(String[] args) {
        Graph graph = new Graph(9);

        // 顶点的矩阵设置
        int[] a1 = new int[] { 0, 10, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 11, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT };
        int[] a2 = new int[] { 10, 0, 18, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 16, MAX_WEIGHT, 12 };
        int[] a3 = new int[] { MAX_WEIGHT, MAX_WEIGHT, 0, 22, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 8 };
        int[] a4 = new int[] { MAX_WEIGHT, MAX_WEIGHT, 22, 0, 20, MAX_WEIGHT, 24, 16, 21 };
        //int[] a4 = new int[] { MAX_WEIGHT, MAX_WEIGHT, 22, 0, 20, MAX_WEIGHT, MAX_WEIGHT, 16, 21 };
        int[] a5 = new int[] { MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 20, 0, 26, MAX_WEIGHT, 7, MAX_WEIGHT };
        int[] a6 = new int[] { 11, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 26, 0, 17, MAX_WEIGHT, MAX_WEIGHT };
        int[] a7 = new int[] { MAX_WEIGHT, 16, MAX_WEIGHT, 24, MAX_WEIGHT, 17, 0, 19, MAX_WEIGHT };
        //int[] a7 = new int[] { MAX_WEIGHT, 16, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 17, 0, 19, MAX_WEIGHT };
        int[] a8 = new int[] { MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 16, 7, MAX_WEIGHT, 19, 0, MAX_WEIGHT };
        int[] a9 = new int[] { MAX_WEIGHT, 12, 8, 21, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 0 };

        graph.matrix[0] = a1;
        graph.matrix[1] = a2;
        graph.matrix[2] = a3;
        graph.matrix[3] = a4;
        graph.matrix[4] = a5;
        graph.matrix[5] = a6;
        graph.matrix[6] = a7;
        graph.matrix[7] = a8;
        graph.matrix[8] = a9;
    }
}
  • 可以看到我们用一个matrix二维数组存放所有顶点
  • 0表示自己到自己,MAX_WEIGHT表示无限大
  • 然后就是一些实例化设置矩阵
  • 有了这些,我们才能进行遍历

深度优先遍历

  • 深度优先遍历(Depth First Search),也有称为深度优先搜索,简称为DFS。
深度优先遍历.png
  • 遍历规则:不断的沿着顶点的深度方向遍历。顶点的深度方向是指它的邻接点方向。
  • 它从图中某个顶点v出发,访问此顶点,然后从顶点的未被访问的邻接点出发深度优先遍历图,直至图中所有和v有路径相通的顶点都被访问到。
  • 简单说,就是顶点将第一个邻接点当作左孩子,其它邻接点都当做右孩子。最后排成一棵树。
  • 深度优先遍历是指先遍历到最深层次然后再探索邻接点,接着又遍历最深层次。二叉树的先序遍历就是一种深度优先遍历。

======================================

  • 思想与步骤
  • 看上图右图,我们先访问A,然后访问A的第一个邻接点B。接着访问B的第一个邻接点C。。。。最后访问到F,F想访问第一个邻接点A。但是A已经访问过了,只能访问F的下一个邻接点G。
  • 这就是深度优先遍历的访问顺序
  • 在代码中,依照分析。获取某顶点的第一个邻接点和下一个临界点是经常使用的方法。访问过程中,我们要判断该顶点是否已访问过,这个也需要辅助变量。
private boolean[] isVisited = new boolean[vertextSize];

/**
 * 获取指定顶点的第一个邻接点
 * 
 * @param index
 *          指定邻接点
 * @return
 */
private int getFirstNeighbor(int index) {
    for (int i = 0; i < vertexSize; i++) {
        if (matrix[index][i] < MAX_WEIGHT && matrix[index][i] > 0) {
            return i;
        }
    }
    return -1;
}

/**
 * 获取指定顶点的下一个邻接点
 * 
 * @param v
 *          指定的顶点
 * @param index
 *          从哪个邻接点开始
 * @return
 */
private int getNextNeighbor(int v, int index) {
    for (int i = index+1; i < vertexSize; i++) {
        if (matrix[v][i] < MAX_WEIGHT && matrix[v][i] > 0) {
            return i;
        }
    }
    return -1;
}

核心代码很简单,经上述分析过后:

/**
 * 图的深度优先遍历算法
 */
private void depthFirstSearch(int i) {
    isVisited[i] = true;
    int w = getFirstNeighbor(i);
    while (w != -1) {
        if (!isVisited[w]) {
            // 需要遍历该顶点
            System.out.println("访问到了:" + w + "顶点");
            depthFirstSearch(w); // 进行深度遍历
        }
        w = getNextNeighbor(i, w); // 第一个相对于w的邻接点
    }
}
  • 0进去,表示v0
  • 设置v0已访问过,获取v0第一个邻接点w != -1说明有这个邻接点,然后对这个临界点进行判断。
    • 已访问,那就找下一个临界点
    • 未访问,进行访问,然后对该邻接点进行深度优先遍历
  • 算法还是很简单的!

广度优先遍历

  • 思想(感悟):
  • 广度优先遍历表示把每一层都遍历完才能遍历下一层
  • 我们来思考:假设v0有3个邻接点,v1 v2 v3
    • 我们访问v0后,然后访问v1 v2 v3。完毕后我们要从v1开始遍历它的邻接点,接着从v2开始遍历它的邻接点,最后是从v3开始遍历它的邻接点。
    • 也就是说,3个邻接点访问完后。我们要回过头逐个遍历它们的邻接点。这一点我觉得要用个容器把它们顺序存储下来。然后每次从容器首部取出一个顶点开始遍历。这里我想到LinkedList,因为它适合增删。而且这里不需要遍历集合。
  • 整体步骤:
    • 我们可以把第一个顶点放进集合,然后while(!queue.isEmpty())while(queue.size() > 0)都行。开始循环。
    • 然后取出并删除集合中第一个顶点元素的第一个邻接点。对这个顶点进行访问,
      • 如果该顶点未访问过,就访问!然后将该顶点放入集合。
      • 如果该顶点已访问过,就找该顶点的下一个邻接点。

核心代码:

/**
 * 图的广度优先遍历算法
 */
private void boardFirstSearch(int i) {
    LinkedList<Integer> queue = new LinkedList<>(); 
    System.out.println("访问到了:" + i + "顶点");
    isVisited[i] = true;
    queue.add(i);
    
    while (queue.size() > 0) {
        int w = queue.removeFirst().intValue();
        int n = getFirstNeighbor(w);
        while (n != -1) {
            if (!isVisited[n]) {
                System.out.println("访问到了:" + n + "顶点");
                isVisited[n] = true;
                queue.add(n);
            }
            n = getNextNeighbor(w, n);
        }
    }
}

完整代码

复制即可运行

import java.util.LinkedList;

public class Graph {
    
    private int vertexSize; // 顶点数量
    private int[] vertexs; // 顶点数组
    private int[][] matrix; // 包含所有顶点的数组
    // 路径权重
    // 0意味着顶点自己到自己,无意义
    // MAX_WEIGHT也意味着到目的顶点不可达
    private static final int MAX_WEIGHT = 1000;
    private boolean[] isVisited; // 某顶点是否被访问过
    
    public Graph(int vertextSize) {
        this.vertexSize = vertextSize;
        matrix = new int[vertextSize][vertextSize];
        vertexs = new int[vertextSize];
        for (int i = 0; i < vertextSize; i++) {
            vertexs[i] = i;
        }
        isVisited = new boolean[vertextSize];
    }
    
    /**
     * 获取指定顶点的第一个邻接点
     * 
     * @param index
     *          指定邻接点
     * @return
     */
    private int getFirstNeighbor(int index) {
        for (int i = 0; i < vertexSize; i++) {
            if (matrix[index][i] < MAX_WEIGHT && matrix[index][i] > 0) {
                return i;
            }
        }
        return -1;
    }
    
    /**
     * 获取指定顶点的下一个邻接点
     * 
     * @param v
     *          指定的顶点
     * @param index
     *          从哪个邻接点开始
     * @return
     */
    private int getNextNeighbor(int v, int index) {
        for (int i = index+1; i < vertexSize; i++) {
            if (matrix[v][i] < MAX_WEIGHT && matrix[v][i] > 0) {
                return i;
            }
        }
        return -1;
    }
    
    /**
     * 图的深度优先遍历算法
     */
    private void depthFirstSearch(int i) {
        isVisited[i] = true;
        int w = getFirstNeighbor(i);
        while (w != -1) {
            if (!isVisited[w]) {
                // 需要遍历该顶点
                System.out.println("访问到了:" + w + "顶点");
                depthFirstSearch(w); // 进行深度遍历
            }
            w = getNextNeighbor(i, w); // 第一个相对于w的邻接点
        }
    }
    
    /**
     * 图的广度优先遍历算法
     */
    private void boardFirstSearch(int i) {
        LinkedList<Integer> queue = new LinkedList<>(); 
        System.out.println("访问到了:" + i + "顶点");
        isVisited[i] = true;
        queue.add(i);
        
        while (queue.size() > 0) {
            int w = queue.removeFirst().intValue();
            int n = getFirstNeighbor(w);
            while (n != -1) {
                if (!isVisited[n]) {
                    System.out.println("访问到了:" + n + "顶点");
                    isVisited[n] = true;
                    queue.add(n);
                }
                n = getNextNeighbor(w, n);
            }
        }
    }

    public static void main(String[] args) {
        Graph graph = new Graph(9);

        // 顶点的矩阵设置
        int[] a1 = new int[] { 0, 10, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 11, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT };
        int[] a2 = new int[] { 10, 0, 18, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 16, MAX_WEIGHT, 12 };
        int[] a3 = new int[] { MAX_WEIGHT, MAX_WEIGHT, 0, 22, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 8 };
        int[] a4 = new int[] { MAX_WEIGHT, MAX_WEIGHT, 22, 0, 20, MAX_WEIGHT, 24, 16, 21 };
        //int[] a4 = new int[] { MAX_WEIGHT, MAX_WEIGHT, 22, 0, 20, MAX_WEIGHT, MAX_WEIGHT, 16, 21 };
        int[] a5 = new int[] { MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 20, 0, 26, MAX_WEIGHT, 7, MAX_WEIGHT };
        int[] a6 = new int[] { 11, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 26, 0, 17, MAX_WEIGHT, MAX_WEIGHT };
        int[] a7 = new int[] { MAX_WEIGHT, 16, MAX_WEIGHT, 24, MAX_WEIGHT, 17, 0, 19, MAX_WEIGHT };
        //int[] a7 = new int[] { MAX_WEIGHT, 16, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 17, 0, 19, MAX_WEIGHT };
        int[] a8 = new int[] { MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 16, 7, MAX_WEIGHT, 19, 0, MAX_WEIGHT };
        int[] a9 = new int[] { MAX_WEIGHT, 12, 8, 21, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 0 };

        graph.matrix[0] = a1;
        graph.matrix[1] = a2;
        graph.matrix[2] = a3;
        graph.matrix[3] = a4;
        graph.matrix[4] = a5;
        graph.matrix[5] = a6; 
        graph.matrix[6] = a7;
        graph.matrix[7] = a8;
        graph.matrix[8] = a9;
        
        graph.depthFirstSearch(0);
        //graph.boardFirstSearch(0);
    }

}

推荐阅读更多精彩内容