Spark 核心 RDD 剖析(下)

上文Spark 核心 RDD 剖析(上)介绍了 RDD 两个重要要素:partition 和 partitioner。这篇文章将介绍剩余的部分,即 compute func、dependency、preferedLocation

compute func

在前一篇文章中提到,当调用 RDD#iterator 方法无法从缓存或 checkpoint 中获取指定 partition 的迭代器时,就需要调用 compute 方法来获取,该方法声明如下:

def compute(split: Partition, context: TaskContext): Iterator[T]

每个具体的 RDD 都必须实现自己的 compute 函数。从上面的分析我们可以联想到,任何一个 RDD 的任意一个 partition 都首先是通过 compute 函数计算出的,之后才能进行 cache 或 checkpoint。接下来我们来对几个常用 transformation 操作对应的 RDD 的 compute 进行分析

map

首先来看下 map 的实现:

  def map[U: ClassTag](f: T => U): RDD[U] = withScope {
    val cleanF = sc.clean(f)
    new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.map(cleanF))
  }

我们调用 map 时,会传入匿名函数 f: T => U,该函数将一个类型 T 实例转换成一个类型 U 的实例。在 map 函数中,将该函数进一步封装成 (context, pid, iter) => iter.map(cleanF) 的函数,该函数以迭代器作为参数,对迭代出的每一个元素执行 f 函数,然后以该封装后的函数作为参数来构造 MapPartitionsRDD,接下来看看 MapPartitionsRDD#compute 是怎么实现的:

  override def compute(split: Partition, context: TaskContext): Iterator[U] =
    f(context, split.index, firstParent[T].iterator(split, context))

上面代码中的 firstParent 是指本 RDD 的依赖 dependencies: Seq[Dependency[_]] 中的第一个,MapPartitionsRDD 的依赖中只有一个父 RDD。而 MapPartitionsRDD 的 partition 与其唯一的父 RDD partition 是一一对应的,所以其 compute 方法可以描述为:对父 RDD partition 中的每一个元素执行传入 map 的方法得到自身的 partition 及迭代器

groupByKey

与 map、union 不同,groupByKey 是一个会产生宽依赖的 transform,其最终生成的 RDD 是 ShuffledRDD,来看看其 compute 实现:

  override def compute(split: Partition, context: TaskContext): Iterator[(K, C)] = {
    val dep = dependencies.head.asInstanceOf[ShuffleDependency[K, V, C]]
    SparkEnv.get.shuffleManager.getReader(dep.shuffleHandle, split.index, split.index + 1, context)
      .read()
      .asInstanceOf[Iterator[(K, C)]]
  }

可以看到,ShuffledRDD 的 compute 使用 ShuffleManager 来获取一个 reader,该 reader 将从本地或远程 BlockManager 拉取 map output 的 file 数据,每个 reduce task 拉取一个 partition 数据。

对于其他生成 ShuffledRDD 的 transform 的 compute 操作也是如此,比如 reduceByKey,join 等

dependency

RDD 依赖是一个 Seq 类型:dependencies_ : Seq[Dependency[_]],因为一个 RDD 可以有多个父 RDD。共有两种依赖:

  • 窄依赖:父 RDD 的 partition 至多被一个子 RDD partition 依赖
  • 宽依赖:父 RDD 的 partition 被多个子 RDD partitions 依赖

窄依赖共有两种实现,一种是一对一的依赖,即 OneToOneDependency:

@DeveloperApi
class OneToOneDependency[T](rdd: RDD[T]) extends NarrowDependency[T](rdd) {
  override def getParents(partitionId: Int): List[Int] = List(partitionId)
}

从其 getParents 方法可以看出 OneToOneDependency 的依赖关系下,子 RDD 的 partition 仅依赖于唯一 parent RDD 的相同 index 的 partition。另一种窄依赖的实现是 RangeDependency,它仅仅被 UnionRDD 使用,UnionRDD 把多个 RDD 合成一个 RDD,这些 RDD 是被拼接而成,其 getParents 实现如下:

  override def getParents(partitionId: Int): List[Int] = {
    if (partitionId >= outStart && partitionId < outStart + length) {
      List(partitionId - outStart + inStart)
    } else {
      Nil
    }
  }

宽依赖只有一种实现,即 ShuffleDependency,宽依赖支持两种 Shuffle Manager,即 HashShuffleManagerSortShuffleManager,Shuffle 相关内容以后会专门写文章介绍

preferedLocation

preferedLocation 即 RDD 每个 partition 对应的优先位置,每个 partition 对应一个Seq[String],表示一组优先节点的 host。

要注意的是,并不是每个 RDD 都有 preferedLocation,比如从 Scala 集合中创建的 RDD 就没有,而从 HDFS 读取的 RDD 就有,其 partition 对应的优先位置及对应的 block 所在的各个节点。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 158,560评论 4 361
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,104评论 1 291
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,297评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,869评论 0 204
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,275评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,563评论 1 216
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,833评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,543评论 0 197
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,245评论 1 241
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,512评论 2 244
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,011评论 1 258
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,359评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,006评论 3 235
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,062评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,825评论 0 194
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,590评论 2 273
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,501评论 2 268

推荐阅读更多精彩内容