Java内存模型

定义

Java 虚拟机规范中试图定义一种 Java 内存模型来屏蔽掉各种硬件和操作系统的内存访问差异,以实现让 Java 程序在各种平台下都能达到一致的内存访问效果。在此之前,主流程序语言(如 C/C++等)直接使用物理硬件和操作系统的内存模型,因此,会由于不同平台上内存模型的差异,有可能导致程序在一套平台上并发完全正常,而在另外一套平台上并发访问却经常出错,因此在某些场景就必须针对不同的平台来编写程序。

主内存与工作内存

Java 内存模型的主要目标是定义程序中各个变量的访问规则,即在虚拟机中将变量存储到内存和从内存中取出变量这样的底层细节。此处的变量(Variables)与 Java 编程中所说的变量有所区别,它包括了实例字段、静态字段和构成数组对象的元素,但不包括局部变量与方法参数,因为后者是线程私有的,不会被共享,自然就不会存在竞争问题。

Java 内存模型规定了所有的变量都存储在主内存(Main Memory)中。每条线程还有自己的工作内存,线程的工作内存中保存了被该线程使用到的变量的主内存副本拷贝,线程对变量的所有操作(读取、赋值等)都必须在工作内存中进行,而不能直接读写主内存中的变量。不同的线程之间也无法直接访问对方工作内存中的变量,线程间变量值的传递均需要通过主内存来完成,线程、主内存、工作内存三者的交互关系如图所示。

image.png
内存间交互操作

Java 内存模型定义了 8 种操作来完成工作内存与主内存之间的交互:一个变量从主内存拷贝到工作内存、从工作内存同步回主内存。虚拟机实现时必须保证下面提及的每一种操作都是原子的、不可再分的。

  • lock(锁定):作用于主内存的变量,它把一个变量标识为一条线程独占的状态。
  • unlock(解锁):作用于主内存的变量,它把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定。
  • read(读取):作用于主内存的变量,它把一个变量的值从主内存传输到线程的工作内存中,以便随后的 load 动作使用。
  • load(载入):作用于工作内存的变量,它把 read 操作从主内存中得到的变量值放入工作内存的变量副本中。
  • use(使用):作用于工作内存的变量,它把工作内存中一个变量的值传递给执行引擎,每当虚拟机遇到一个需要使用到变量的值的字节码指令时将会执行这个操作。
  • assign(赋值):作用于工作内存的变量,它把一个从执行引擎接收到的值赋给工作内存的变量,每当虚拟机遇到一个给变量赋值的字节码指令时执行这个操作。
  • store(存储):作用于工作内存的变量,它把工作内存中一个变量的值传送到主内存中,以便随后的 write 操作使用。
  • write(写入):作用于主内存的变量,它把 store 操作从工作内存中得到的变量的值放入主内存的变量中。

内存模型三大特性

原子性

除了 long 和 double 之外的基本数据类型的访问读写是具备原子性的。

Java 内存模型允许虚拟机将没有被 volatile 修饰的 64 位数据的读写操作划分为两次 32 位的操作来进行,即虚拟机可以不保证 64 位数据类型的 load、store、read 和 write 这 4 个操作的原子性。但是目前各种平台下的商用虚拟机几乎都选择把 64 位数据的读写操作作为原子操作来对待。

AtomicInteger、AtomicLong、AtomicReference 等特殊的原子性变量类提供了下面形式的原子性条件更新语句,使得比较和更新这两个操作能够不可分割地执行。

boolean compareAndSet(expectedValue, updateValue);

AtomicInteger 使用举例:

private AtomicInteger ai =  new AtomicInteger(0); public  int next() { return ai.addAndGet(2) }

如果应用场景需要一个更大范围的原子性保证,Java 内存模型还提供了 lock 和 unlock 操作来满足这种需求,尽管虚拟机未把 lock 和 unlock 操作直接开放给用户使用,但是却提供了更高层次的字节码指令 monitorenter 和 monitorexit 来隐式地使用这两个操作,这两个字节码指令反映到 Java 代码中就是同步块——synchronized 关键字,因此在 synchronized 块之间的操作也具备原子性。

可见性

可见性是指当一个线程修改了共享变量的值,其他线程能立即得知这个修改。

Java 内存模型是通过在变量修改后将新值同步回主内存,在变量读取前从主内存刷新变量值这种依赖主内存作为传递媒介的方式来实现可见性的,无论是普通变量还是 volatile 变量都是如此,普通变量与 volatile 变量的区别是,volatile 的特殊规则保证了新值能立即同步到主内存,以及每次使用前立即从主内存刷新。因此,可以说 volatile 保证了多线程操作时变量的可见性,而普通变量则不能保证这一点。

除了 volatile 之外,Java 还有两个关键字能实现可见性,即 synchronized 和 final。同步块的可见性是由“对一个变量执行 unlock 操作之前,必须先把此变量同步回主内存中(执行 store、write 操作)”这条规则获得的,而 final 关键字的可见性是指:被 final 修饰的字段在构造器中一旦初始化完成,并且构造器没有把“this”的引用传递出去(this 引用逃逸是一件很危险的事情,其他线程有可能通过这个引用访问到“初始化了一半”的对象),那在其他线程中就能看见 final 字段的值。

有序性

本线程内观察,所有的操作都是有序的;如果在一个线程中观察另一个线程,所有的操作都是无序的。前半句是指线程内表现为串行的语义,后半句是指指令重排和工作内存和主内存存在同步延迟的现象。

Java 语言提供了 volatile 和 synchronized 两个关键字来保证线程之间操作的有序性,volatile 关键字本身就包含了禁止指令重排序的语义,而 synchronized 则是由“一个变量在同一个时刻只允许一条线程对其进行 lock 操作”这条规则获得的,这条规则决定了持有同一个锁的两个同步块只能串行地进入。

synchronized 关键字在需要这 3 种特性的时候都可以作为其中一种的解决方案,看起来很“万能”。的确,大部分的并发控制操作都能使用 synchronized 来完成。synchronized 的“万能”也间接造就了它被程序员滥用的局面,越“万能”的并发控制,通常会伴随着越大的性能影响。

先行发生原则

如果 Java 内存模型中所有的有序性都只靠 volatile 和 synchronized 来完成,那么有一些操作将会变得很繁琐,但是我们在编写 Java 并发代码的时候并没有感觉到这一点,这是因为 Java 语言中有一个“先行发生”(Happen-Before) 的原则。这个原则非常重要,它是判断数据是否存在竞争,线程是否安全的主要依据。依靠这个原则,我们可以通过几条规则一次性地解决并发环境下两个操作之间是否可能存在冲突的所有问题。

先行发生是 Java 内存模型中定义的两项操作之间的偏序关系,如果说操作 A 先行发生于操作 B,其实就是说在发生操作 B 之前,操作 A 产生的影响能被操作 B 观察到,“影响”包括修改了内存中共享变量的值、发送了消息、调用了方法等。

// 以下操作在线程 A 中执行 k = 1; // 以下操作在线程 B 中执行 j = k; // 以下操作在线程 C 中执行 k = 2;

假设线程 A 中的操作“k=1”先行发生于线程 B 的操作“j=k”,那么可以确定在线程 B 的操作执行后,变量 j 的值一定等于 1,得出这个结论的依据有两个:一是根据先行发生原则,“k=1”的结果可以被观察到;二是线程 C 还没“登场”,线程 A 操作结束之后没有其他线程会修改变量 k 的值。现在再来考虑线程 C,我们依然保持线程 A 和线程 B 之间的先行发生关系,而线程 C 出现在线程 A 和线程 B 的操作之间,但是线程 C 与线程 B 没有先行发生关系,那 j 的值会是多少呢?答案是不确定!1 和 2 都有可能,因为线程 C 对变量 k 的影响可能会被线程 B 观察到,也可能不会,这时候线程 B 就存在读取到过期数据的风险,不具备多线程安全性。

下面是 Java 内存模型下一些“天然的”先行发生关系,这些先行发生关系无须任何同步器协助就已经存在,可以在编码中直接使用。如果两个操作之间的关系不在此列,并且无法从下列规则推导出来的话,它们就没有顺序性保障,虚拟机可以对它们随意地进行重排序。

  • 程序次序规则(Program Order Rule):在一个线程内,按照程序代码顺序,书写在前面的操作先行发生于书写在后面的操作。准确地说,应该是控制流顺序而不是程序代码顺序,因为要考虑分支、循环等结构。
  • 管程锁定规则(Monitor Lock Rule):一个 unlock 操作先行发生于后面对同一个锁的 lock 操作。这里必须强调的是同一个锁,而“后面”是指时间上的先后顺序。
  • volatile 变量规则(Volatile Variable Rule):对一个 volatile 变量的写操作先行发生于后面对这个变量的读操作,这里的“后面”同样是指时间上的先后顺序。
  • 线程启动规则(Thread Start Rule):Thread 对象的 start() 方法先行发生于此线程的每一个动作。
  • 线程终止规则(Thread Termination Rule):线程中的所有操作都先行发生于对此线程的终止检测,我们可以通过 Thread.join() 方法结束、Thread.isAlive() 的返回值等手段检测到线程已经终止执行。
  • 线程中断规则(Thread Interruption Rule):对线程 interrupt() 方法的调用先行发生于被中断线程的代码检测到中断事件的发生,可以通过 Thread.interrupted() 方法检测到是否有中断发生。
  • 对象终结规则(Finalizer Rule):一个对象的初始化完成(构造函数执行结束)先行发生于它的 finalize() 方法的开始。
  • 传递性(Transitivity):如果操作 A 先行发生于操作 B,操作 B 先行发生于操作 C,那就可以得出操作 A 先行发生于操作 C 的结论。
private  int value =  0; pubilc void setValue(int value) { this.value = value; } public  int getValue() { return value; }

上述代码显示的是一组再普通不过的 getter/setter 方法,假设存在线程 A 和 B,线程 A 先(时间上的先后)调用了“setValue(1)”,然后线程 B 调用了同一个对象的“getValue()”,那么线程 B 收到的返回值是什么?

我们依次分析一下先行发生原则中的各项规则,由于两个方法分别由线程 A 和线程 B 调用,不在一个线程中,所以程序次序规则在这里不适用;由于没有同步块,自然就不会发生 lock 和 unlock 操作,所以管程锁定规则不适用;由于 value 变量没有被 volatile 关键字修饰,所以 volatile 变量规则不适用;后面的线程启动、终止、中断规则和对象终结规则也和这里完全没有关系。因为没有一个适用的先行发生规则,所以最后一条传递性也无从谈起,因此我们可以判定尽管线程 A 在操作时间上先于线程 B,但是无法确定线程 B 中“getValue()”方法的返回结果,换句话说,这里面的操作不是线程安全的。

那怎么修复这个问题呢?我们至少有两种比较简单的方案可以选择:要么把 getter/setter 方法都定义为 synchronized 方法,这样就可以套用管程锁定规则;要么把 value 定义为 volatile 变量,由于 setter 方法对 value 的修改不依赖 value 的原值,满足 volatile 关键字使用场景,这样就可以套用 volatile 变量规则来实现先行发生关系。

通过上面的例子,我们可以得出结论:一个操作“时间上的先发生”不代表这个操作会是“先行发生”,那如果一个操作“先行发生”是否就能推导出这个操作必定是“时间上的先发生”呢?很遗憾,这个推论也是不成立的,一个典型的例子就是多次提到的“指令重排序”。

// 以下操作在同一个线程中执行 int i = 1; int j = 2;

代码清单的两条赋值语句在同一个线程之中,根据程序次序规则,“int i=1”的操作先行发生于“int j=2”,但是“int j=2”的代码完全可能先被处理器执行,这并不影响先行发生原则的正确性,因为我们在这条线程之中没有办法感知到这点。

上面两个例子综合起来证明了一个结论:时间先后顺序与先行发生原则之间基本没有太大的关系,所以我们衡量并发安全问题的时候不要受到时间顺序的干扰,一切必须以先行发生原则为准。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 158,736评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,167评论 1 291
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,442评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,902评论 0 204
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,302评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,573评论 1 216
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,847评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,562评论 0 197
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,260评论 1 241
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,531评论 2 245
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,021评论 1 258
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,367评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,016评论 3 235
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,068评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,827评论 0 194
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,610评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,514评论 2 269