iOS 中几种常用的锁总结

96
怪小喵
0.9 2016.08.03 16:08* 字数 842

多线程编程中,应该尽量避免资源在线程之间共享,以减少线程间的相互作用。 但是总是有多个线程相互干扰的情况(如多个线程访问一个资源)。在线程必须交互的情况下,就需要一些同步工具,来确保当它们交互的时候是安全的。

锁是线程编程同步工具的基础。iOS开发中常用的锁有如下几种:

  1. @synchronized
  2. NSLock 对象锁
  3. NSRecursiveLock 递归锁
  4. NSConditionLock 条件锁
  5. pthread_mutex 互斥锁(C语言)
  6. dispatch_semaphore 信号量实现加锁(GCD)
  7. OSSpinLock (暂不建议使用,原因参见这里

下图是它们的性能对比:

性能表 图1.1
  • ** @synchronized 关键字加锁 互斥锁,性能较差不推荐使用**
 @synchronized(这里添加一个OC对象,一般使用self) {
       这里写要加锁的代码
  }
 注意点
   1.加锁的代码尽量少
   2.添加的OC对象必须在多个线程中都是同一对象
    3.优点是不需要显式的创建锁对象,便可以实现锁的机制。
    4. @synchronized块会隐式的添加一个异常处理例程来保护代码,该处理例程会在异常抛出的时候自动的释放互斥锁。所以如果不想让隐式的异常处理例程带来额外的开销,你可以考虑使用锁对象。

下面通过 卖票的例子 展示使用

    //设置票的数量为5
    _tickets = 5;
    
    //线程1
    dispatch_async(self.concurrentQueue, ^{
        [self saleTickets];
    });
    
    //线程2
    dispatch_async(self.concurrentQueue, ^{
        [self saleTickets];
    });

- (void)saleTickets
{
    while (1) {
        @synchronized(self) {
            [NSThread sleepForTimeInterval:1];
            if (_tickets > 0) {
                _tickets--;
                NSLog(@"剩余票数= %ld, Thread:%@",_tickets,[NSThread currentThread]);
            } else {
                NSLog(@"票卖完了  Thread:%@",[NSThread currentThread]);
                break;
            }
        }
    }
}
控制台打印
  • ** NSLock 互斥锁 不能多次调用 lock方法,会造成死锁**

在Cocoa程序中NSLock中实现了一个简单的互斥锁。
所有锁(包括NSLock)的接口实际上都是通过NSLocking协议定义的,它定义了lockunlock方法。你使用这些方法来获取和释放该锁。

NSLock类还增加了tryLocklockBeforeDate:方法。
tryLock试图获取一个锁,但是如果锁不可用的时候,它不会阻塞线程,相反,它只是返回NO。
lockBeforeDate:方法试图获取一个锁,但是如果锁没有在规定的时间内被获得,它会让线程从阻塞状态变为非阻塞状态(或者返回NO)。

还是卖票的例子

    //设置票的数量为5
    _tickets = 5;
    
    //创建锁
    _mutexLock = [[NSLock alloc] init];
    
    //线程1
    dispatch_async(self.concurrentQueue, ^{
        [self saleTickets];
    });
    
    //线程2
    dispatch_async(self.concurrentQueue, ^{
        [self saleTickets];
    });

- (void)saleTickets
{

    while (1) {
        [NSThread sleepForTimeInterval:1];
        //加锁
        [_mutexLock lock];
        if (_tickets > 0) {
            _tickets--;
            NSLog(@"剩余票数= %ld, Thread:%@",_tickets,[NSThread currentThread]);        
        } else {
            NSLog(@"票卖完了  Thread:%@",[NSThread currentThread]);
            break;
        }
        //解锁
        [_mutexLock unlock];
    }
}
控制台打印
  • ** NSRecursiveLock 递归锁**

使用锁最容易犯的一个错误就是在递归或循环中造成死锁
如下代码中,因为在线程1中的递归block中,锁会被多次的lock,所以自己也被阻塞了

    //创建锁
    _mutexLock = [[NSLock alloc]init];
  
    //线程1
    dispatch_async(self.concurrentQueue, ^{
        static void(^TestMethod)(int);
        TestMethod = ^(int value)
        {
            [_mutexLock lock];
            if (value > 0)
            {
                [NSThread sleepForTimeInterval:1];
                TestMethod(value--);
            }
            [_mutexLock unlock];
        };
        
        TestMethod(5);
    });
    
  

此处将NSLock换成NSRecursiveLock,便可解决问题。
NSRecursiveLock类定义的锁可以在同一线程多次lock,而不会造成死锁。
递归锁会跟踪它被多少次lock。每次成功的lock都必须平衡调用unlock操作。
只有所有的锁住和解锁操作都平衡的时候,锁才真正被释放给其他线程获得。

    //创建锁
    _rsLock = [[NSRecursiveLock alloc] init];
    
   //线程1
    dispatch_async(self.concurrentQueue, ^{
        static void(^TestMethod)(int);
        TestMethod = ^(int value)
        {
            [_rsLock lock];
            if (value > 0)
            {
                [NSThread sleepForTimeInterval:1];
                TestMethod(value--);
            }
            [_rsLock unlock];
        };
        
        TestMethod(5);
    });
  • ** NSConditionLock 条件锁 **

直接看代码和介绍

  //主线程中
    NSConditionLock *theLock = [[NSConditionLock alloc] init];
    
    //线程1
    dispatch_async(self.concurrentQueue, ^{
        for (int i=0;i<=3;i++)
        {
            [theLock lock];
            NSLog(@"thread1:%d",i);
            sleep(1);
            [theLock unlockWithCondition:i];
        }
    });
    
    //线程2
    dispatch_async(self.concurrentQueue, ^{
        [theLock lockWhenCondition:2];
        NSLog(@"thread2");
        [theLock unlock];
    });
控制台打印

在线程1中的加锁使用了lock,是不需要条件的,所以顺利的就锁住了。
unlockWithCondition:在开锁的同时设置了一个整型的条件 2 。
线程2则需要一把被标识为2的钥匙,所以当线程1循环到 i = 2 时,线程2的任务才执行。

NSConditionLock也跟其它的锁一样,是需要lock与unlock对应的,只是lock,lockWhenCondition:与unlock,unlockWithCondition:是可以随意组合的,当然这是与你的需求相关的。

  • pthread_mutex 互斥锁
 __block pthread_mutex_t mutex;
    pthread_mutex_init(&mutex, NULL);
    
    //线程1
    dispatch_async(self.concurrentQueue), ^{
        pthread_mutex_lock(&mutex);
        NSLog(@"任务1");
        sleep(2);
        pthread_mutex_unlock(&mutex);
    });
    
    //线程2
    dispatch_async(self.concurrentQueue), ^{
        sleep(1);
        pthread_mutex_lock(&mutex);
        NSLog(@"任务2");
        pthread_mutex_unlock(&mutex);
    });
  • dispatch_semaphore 信号量实现加锁
    GCD中也已经提供了一种信号机制,使用它我们也可以来构建一把”锁”(从本质意义上讲,信号量与锁是有区别,请看互斥锁与信号量的作用与区别):
   // 创建信号量
    dispatch_semaphore_t semaphore = dispatch_semaphore_create(1);
    //线程1
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
         NSLog(@"任务1");
        sleep(10);
        dispatch_semaphore_signal(semaphore);
    });
    
    //线程2
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(1);
        dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
        NSLog(@"任务2");
        dispatch_semaphore_signal(semaphore);
    });
  • OSSpinLock

OSSpinLock 在图1.1 中显示的效率最高(暂不建议使用,原因参见这里

  //设置票的数量为5
    _tickets = 5;
    //创建锁
    _pinLock = OS_SPINLOCK_INIT;
    //线程1
    dispatch_async(self.concurrentQueue, ^{
        [self saleTickets];
    });
    //线程2
    dispatch_async(self.concurrentQueue, ^{
        [self saleTickets];
    });

- (void)saleTickets {
    
        while (1) {
            [NSThread sleepForTimeInterval:1];
            //加锁
            OSSpinLockLock(&_pinLock);
            
            if (_tickets > 0) {
                _tickets--;
                NSLog(@"剩余票数= %ld, Thread:%@",_tickets,[NSThread currentThread]);
                
            } else {
                NSLog(@"票卖完了  Thread:%@",[NSThread currentThread]);
                break;
            }
            //解锁
            OSSpinLockUnlock(&_pinLock);
        }

}
控制台输出
wp的技术总结
Web note ad 1