锂电池配料基础知识

一、 电极的组成:

1、 正极组成:

a、 钴酸锂:正极活性物质,锂离子源,为电池提高锂源。

b、 导电剂:提高正极片的导电性,补偿正极活性物质的电子导电性。

提高正极片的电解液的吸液量,增加反应界面,减少极化。

c、 PVDF粘合剂:将钴酸锂、导电剂和铝箔或铝网粘合在一起。

d、 正极引线:由铝箔或铝带制成。

2、 负极组成:

a、 石墨:负极活性物质,构成负极反应的主要物质;主要分为天然石墨和人造

石墨两大类。

b、 导电剂:提高负极片的导电性,补偿负极活性物质的电子导电性。

提高反应深度及利用率。

防止枝晶的产生。

利用导电材料的吸液能力,提高反应界面,减少极化。

(可根据石墨粒度分布选择加或不加)。

c、 添加剂:降低不可逆反应,提高粘附力,提高浆料黏度,防止浆料沉淀。

d、 水性粘合剂:将石墨、导电剂、添加剂和铜箔或铜网粘合在一起。

e、 负极引线:由铜箔或镍带制成。

二、 配料目的:

配料过程实际上是将浆料中的各种组成按标准比例混合在一起,调制成浆料,以利于均匀涂布,保证极片的一致性。配料大致包括五个过程,即:原料的预处理、掺和、浸湿、分散和絮凝。

三、 配料原理:

(一) 、正极配料原理

1、 原料的理化性能。

(1) 钴酸锂:非极性物质,不规则形状,粒径D50一般为6-8 μm,含水量≤0.2%,通常为碱性,PH值为10-11左右。

锰酸锂:非极性物质,不规则形状,粒径D50一般为5-7 μm,含水量≤0.2%,通常为弱碱性,PH值为8左右。

(2) 导电剂:非极性物质,葡萄链状物,含水量3-6%,吸油值~300,粒径一般为 2-5 μm;主要有普通碳黑、超导碳黑、石墨乳等,在大批量应用时一般选择超导碳黑和石墨乳复配;通常为中性。

(3) PVDF粘合剂:非极性物质,链状物,分子量从300,000到3,000,000不等;吸水后分子量下降,粘性变差。

(4) NMP:弱极性液体,用来溶解/溶胀PVDF,同时用来稀释浆料。

2、 原料的预处理

(1) 钴酸锂:脱水。一般用120 oC常压烘烤2小时左右。

(2) 导电剂:脱水。一般用200 oC常压烘烤2小时左右。

(3) 粘合剂:脱水。一般用120-140 oC常压烘烤2小时左右,烘烤温度视分子量的大小决定。

(4) NMP:脱水。使用干燥分子筛脱水或采用特殊取料设施,直接使用。

3、 原料的掺和:

(1) 粘合剂的溶解(按标准浓度)及热处理。

(2) 钴酸锂和导电剂球磨:使粉料初步混合,钴酸锂和导电剂粘合在一起,提高团聚作用和的导电性。配成浆料后不会单独分布于粘合剂中,球磨时间一般为2小时左右;为避免混入杂质,通常使用玛瑙球作为球磨介子。

4、 干粉的分散、浸湿:

(1) 原理:固体粉末放置在空气中,随着时间的推移,将会吸附部分空气在固体的表面上,液体粘合剂加入后,液体与气体开始争夺固体表面;如果固体与气体吸附力比与液体的吸附力强,液体不能浸湿固体;如果固体与液体吸附力比与气体的吸附力强,液体可以浸湿固体,将气体挤出。

当润湿角≤90度,固体浸湿。

当润湿角>90度,固体不浸湿。

正极材料中的所有组员都能被粘合剂溶液浸湿,所以正极粉料分散相对容易。

(2) 分散方法对分散的影响:

A、 静置法(时间长,效果差,但不损伤材料的原有结构);

B、 搅拌法;自转或自转加公转(时间短,效果佳,但有可能损伤个别

材料的自身结构)。

1、搅拌桨对分散速度的影响。搅拌桨大致包括蛇形、蝶形、球形、桨形、齿轮形等。一般蛇形、蝶形、桨型搅拌桨用来对付分散难度大的材料或配料的初始阶段;球形、齿轮形用于分散难度较低的状态,效果佳。

2、搅拌速度对分散速度的影响。一般说来搅拌速度越高,分散速度越快,但对材料自身结构和对设备的损伤就越大。

3、浓度对分散速度的影响。通常情况下浆料浓度越小,分散速度越快,但太稀将导致材料的浪费和浆料沉淀的加重。

4、浓度对粘结强度的影响。浓度越大,柔制强度越大,粘接强度

越大;浓度越低,粘接强度越小。

5、真空度对分散速度的影响。高真空度有利于材料缝隙和表面的气体排出,降低液体吸附难度;材料在完全失重或重力减小的情况下分散均匀的难度将大大降低。

6、温度对分散速度的影响。适宜的温度下,浆料流动性好、易分散。太热浆料容易结皮,太冷浆料的流动性将大打折扣。

5、 稀释。将浆料调整为合适的浓度,便于涂布。

(二)、负极配料原理(大致与正极配料原理相同)

1、 原料的理化性能。

(1) 石墨:非极性物质,易被非极性物质污染,易在非极性物质中分散;不易吸水,也不易在水中分散。被污染的石墨,在水中分散后,容易重新团聚。一般粒径D50为20μm左右。颗粒形状多样且多不规则,主要有球形、片状、纤维状等。

(2) 水性粘合剂(SBR):小分子线性链状乳液,极易溶于水和极性溶剂。

(3) 防沉淀剂(CMC):高分子化合物,易溶于水和极性溶剂。

(4) 异丙醇:弱极性物质,加入后可减小粘合剂溶液的极性,提高石墨和粘合剂溶液的相容性;具有强烈的消泡作用;易催化粘合剂网状交链,提高粘结强度。

乙醇:弱极性物质,加入后可减小粘合剂溶液的极性,提高石墨和粘合剂溶液的相容性;具有强烈的消泡作用;易催化粘合剂线性交链,提高粘结强度(异丙醇和乙醇的作用从本质上讲是一样的,大批量生产时可考虑成本因素然后选择添加哪种)。

(5)去离子水(或蒸馏水):稀释剂,酌量添加,改变浆料的流动性。

2、 原料的预处理:

(1) 石墨:A、混合,使原料均匀化,提高一致性。B、300~400℃常压烘烤,除去表面油性物质,提高与水性粘合剂的相容能力,修圆石墨表面棱角(有些材料为保持表面特性,不允许烘烤,否则效能降低)。

(2) 水性粘合剂:适当稀释,提高分散能力。

3、 掺和、浸湿和分散:

(1) 石墨与粘合剂溶液极性不同,不易分散。

(2) 可先用醇水溶液将石墨初步润湿,再与粘合剂溶液混合。

(3) 应适当降低搅拌浓度,提高分散性。

(4) 分散过程为减少极性物与非极性物距离,提高势能或表面能,所以为吸热反应,搅拌时总体温度有所下降。如条件允许应该适当升高搅拌温度,使吸热变得容易,同时提高流动性,降低分散难度。

(5) 搅拌过程如加入真空脱气过程,排除气体,促进固-液吸附,效果更佳。

(6) 分散原理、分散方法同正极配料中的相关内容,在三、(一)、4中有详细论述,在此不予详细解释。

4、 稀释。将浆料调整为合适的浓度,便于涂布。

四、 配料注意事项:

1、 防止混入其它杂质;

2、 防止浆料飞溅;

3、 浆料的浓度(固含量)应从高往低逐渐调整,以免增加麻烦;

4、 在搅拌的间歇过程中要注意刮边和刮底,确保分散均匀;

5、 浆料不宜长时间搁置,以免沉淀或均匀性降低;

6、 需烘烤的物料必须密封冷却之后方可以加入,以免组分材料性质变化;

7、 搅拌时间的长短以设备性能、材料加入量为主;搅拌桨的使用以浆料分散难度进行更换,无法更换的可将转速由慢到快进行调整,以免损伤设备;

8、 出料前对浆料进行过筛,除去大颗粒以防涂布时造成断带;

9、 对配料人员要加强培训,确保其掌握专业知识,以免酿成大祸;

10、 配料的关键在于分散均匀,掌握该中心,其它方式可自行调整。

锂离子电池的基本知识

第一节 锂离子电池的基本知识

一般而言,锂离子电池有三部分构成:

1.锂离子电芯

2.保护电路(PCM)

3.外壳即胶壳

电池的分类

从锂离子电池与手机配合情况来看,一般分为外置电池和内置电池,这种叫法很容易理解,外置电池就是直接装在手上背面,如: MOTOROLA 191,SAMSUNG 系列等;而内置电池就是装入手机后,还另有一个外壳把其扣在手机电池内,如:MOTOROLA 998,8088,NOKIA的大部分机型

1.外置电池

外置电池的封装形式有超声波焊接和卡扣两种:

1.1超声波焊接

外壳

这种封装形式的电池外壳均有底面壳之分,材料一般为ABS+PC料,面壳一般喷油处理,代表型号有 :MOTOROLA 191,SAMSUNG 系列,原装电池的外壳经喷油处理后长期使用一般不会磨花,而一些品牌电池或水货电池用上几天外壳喷油就开始脱落了.其原因为:手机电池的外壳较便宜,而喷油处理的成本一般为外壳的几倍(好一点的),这样处理一般有三道工序:喷光油(打底),喷油(形成颜色),再喷亮油(顺序应该是这样的,如果我没记错的话),而一些厂商为了降低成本就省去了第一和第三道工序,这样成本就很低了.

超声波焊塑机

其作用为:

行业内比较好的国产超声波焊塑机应该是深圳科威信机电公司生产的.

焊接

有了好的超声波焊塑机不够的,是否能够焊接OK,还与外壳的材料和焊塑机参数设置有很大关系,外壳方面主要与生产厂家的水口料掺杂情况有关,而参数设置则需自己摸索,由于涉及到公司一些技术资料,在这里不便多讲.

1.2卡扣式

卡扣式电池的原理为底面壳设计时形成卡扣式,其一般为一次性,如果卡好后用户强行折开的话,就无法复原,不过这对于生产厂家来讲不是很大的难度(卡好后再折开),其代表型号有:爱立信788,MOTOROLA V66.

2.内置电池

内置电池的封形式也有两种,超声波焊接和包标(使用商标将电池全部包起)

超声波焊接的电池主要有:NOKIA 8210,8250,8310,7210等.

包标的电池就很多了,如前两年很浒的MOTO998 ,8088了.

第二节 锂离子电芯的基本知识

锂离子电芯是一种新型的电池能源,它不含金属锂,在充放电过程中,只有锂离子在正负极间往来运动,电极和电解质不参与反应。锂离子电芯的能量容量密度可以达到300Wh/L,重量容量密度可以达到125Wh/L。

一、 电芯原理

锂离子电芯的反应机理是随着充放电的进行,锂离子在正负极之间嵌入脱出,往返穿梭电芯内部而没有金属锂的存在,因此锂离子电芯更加安全稳定。其反应示意图及基本反应式如下所示:

二、 电芯的构造

电芯的正极是LiCoO2加导电剂和粘合剂,涂在铝箔上形成正极板,负极是层状石墨加导电剂及粘合剂涂在铜箔基带上,目前比较先进的负极层状石墨颗粒已采用纳米碳。根据上述的反应机理,正极采用LiCoO2、LiNiO2、LiMn2O2,其中LiCoO2本是一种层结构很稳定的晶型,但当从LiCoO2拿走XLi后,其结构可能发生变化,但是否发生变化取决于X的大小。通过研究发现当X>0.5时Li1-XCoO2的结构表现为极其不稳定,会发生晶型瘫塌,其外部表现为电芯的压倒终结。所以电芯在使用过程中应通过限制充电电压来控制Li1-XCoO2中的X值,一般充电电压不大于4.2V那么X小于0.5 ,这时Li1-XCoO2的晶型仍是稳定的。负极C6其本身有自己的特点,当第一次化成后,正极LiCoO2中的Li被充到负极C6中,当放电时Li回到正极LiCoO2中,但化成之后必须有一部分Li留在负极C6中,心以保证下次充放电Li的正常嵌入,否则电芯的压倒很短,为了保证有一部分Li留在负极C6中,一般通过限制放电下限电压来实现。所以锂电芯的安全充电上限电压≤4 .2V,放电下限电压≥2.5V。

三、 电芯的安全性

电芯的安全性与电芯的设计、材料及生产工艺生产过程的控制等因素密切相关。在电芯的充放电过程中,正负极材料的电极电位均处于动态变化中,随着充电电压的增高,正极材料(LixCoO2)电位不断上升,嵌锂的负极材料(LixC6)电位首先下降,然后出现一个较长的电位平台,当充电电压过高( >4.2V)或由于负极活性材料面密度相对于正极材料面密度(C/A)比值不足时,负极材料过度嵌锂,负极电位则迅速下降,使金属锂析出(正常情况下则不会有金属锂的的析出),这样会对电芯的性能及安全性构成极大的威胁。在材料已定的情况下,C/A太大,则会出现上述结果。相反,C/A太小,容量低,平台低,循环特性差。这样,在生产加工中如何保证设计好的C/A比成了生产加工中的关键。所以在生产中应就以下几个方面进行控制:

1.负极材料的处理

1)将大粒径及超细粉与所要求的粒径进行彻底分离,避免了局部电化学反应过度激烈而产生负反应的情况,提高了电芯的安全性。

2)提高材料表面孔隙率,这样可以提高10%以上的容量,同时在C/A 比不变的情况下,安全性大大提高。处理的结果使负极材料表面与电解液有了更好的相容性,促进了SEI膜的形成及稳定上。

2.制浆工艺的控制

1)制浆过程采用先进的工艺方法及特殊的化学试剂,使正负极浆料各组之间的表面张力降到了最低。提高了各组之间的相容性,阻止了材料在搅拌过程“团聚”的现象。

2)涂布时基材料与喷头的间隙应控制在0.2mm以下,这样涂出的极板表面光滑无颗粒、凹陷、划痕等缺陷。

3)浆料应储存6小时以上,浆料粘度保持稳定,浆料内部无自聚成团现象。均匀的浆料保证了正负极在基材上分布的均匀性,从而提高了电芯的一致性、安全性。

3.采用先进的极片制造设备

1)可以保证极片质量的稳定和一致性,大大提高电芯极片均一性,降低了不安全电芯的出现机率。

2)涂布机单片极板上面密度误差值应小于±2%,极板长度及间隙尺寸误差应小于2mm。

3)辊压机的辊轴锥度和径向跳动应不大于4μm,这样才能保证极板厚度的一致性。设备应配有完善的吸尘系统,避免因浮尘颗粒而导致的电芯内部微短路,从而保证了电芯的自放电性能。

4)分切机应采用切刀为辊刀型的连续分切设备,这样切出的极片不存在荷叶边,毛刺等缺陷。同样设备应配有完善的吸尘系统,从而保证了电芯的自放电性能。

4.先进的封口技术

目前国内外方形锂离子电芯的封口均采用激光(LASER)熔接封口技术,它是利用YAG棒(钇铝石榴石)激光谐振腔中受强光源(一般为氮灯)的激励下发出一束单一频率的光(λ=1.06mm)经过谐振折射聚焦成一束,再把聚焦的焦点对准电芯的筒体和盖板之间,使其熔化后亲合为一体,以达到盖板与筒体的密封熔合的目的。为了达到密封焊,必须掌握以下几个要素:

1)必须有能量大、频率高、聚焦性能好、跟踪精度高的激光焊机。

2)必须有配合精度高的适用于激光焊的电芯外壳及盖板。

3)必须有高统一纯度的氮气保护,特别是铝壳电芯要求氮气纯度高,否则铝壳表面就会产生难以熔化的Al2O3(其熔点为2400℃)。

四、电芯膨胀原因及控制

锂离子电芯在制造和使用过程中往往会有肿胀现象,经过分析与研究,发现主要有以下两方面原因:

1锂离子嵌入带来的厚度变化

电芯充电时锂离子从正极脱出嵌入负极,引起负极层间距增大,而出现膨胀,一般而言,电芯越厚,其膨胀量越大。

2. 工艺控制不力引起的膨胀

在制造过程中,如浆料分散、C/A比离散性、温度控制都会直接影响电芯电芯的膨胀程度。特别是水,因为充电形成的高活性锂碳化合物对水非常 敏感,从而发生激烈的化学反应。反应产生的气体造成电芯内压升高,增加了电芯的膨胀行为。所以在生产中,除了应对极板严格除湿外,在注液过程中更应采用除湿设备,保证空气的干燥度为HR2%,露点(大气中的湿空气由于温度下降,使所含的水蒸气达到饱和状态而开始凝结时的温度)小于-40℃。在非常干燥的条件下,并采取真空注液,极大地降低了极板和电解液的吸水机率。

五、铝壳电芯与钢壳电芯安全性比较

铝壳相对于钢壳具有很高的安全优势,以下是不同的压力实验:

注:压力是电芯压力为电芯内部之压力(单位:Kg),表内数据为电芯之厚度(单位:mm)由此可见钢壳对内压反映十分迟钝,而铝壳对内压反应却十分敏锐。因此从厚度上就基本能判断出电芯的内压,而钢壳电芯往往隐含着内压带来的不安全隐患。其中钢壳电芯型号为063448。

第三节 锂离子电池保护线路(PCM)

由第二节锂离子电芯的知识我们可以看出,锂离子电池至少需要三重保护-----过充电保护,过放电保护,短路保护,那么就应而产生了其保护线路,那么这个保护线路针对以上三个保护要求而言:

过充电保护: 过充电保护 IC 的原理为:当外部充电器对锂电池充电时,为防止因温度上升所导致的内压上升,需终止充电状态。此时,保护 IC 需检测电池电压,当到达 4.25V 时(假设电池过充点为 4.25V)即启动过度充电保护,将功率 MOS 由开转为切断,进而截止充电。

过放电保护: 过放电保护 IC 原理:为了防止锂电池的过放电,假设锂电池接上负载,当锂电池电压低于其过放电电压检测点(假定为 2.5V)时将启动过放电保护,使功率 MOSFET 由开转变为切断而截止放电,以避免电池过放电现象产生,并将电池保持在低静态电流的待机模式,此时的电流仅 0.1uA。 当锂电池接上充电器,且此时锂电池电压高于过度放电电压时,过度放电保护功能方可解除。另外,考虑到脉冲放电的情况,过放电检测电路设有延迟时间以避免产生误动作。

过放电保护及过充电保护IC主要生产厂家有:美上美(MITSUMI),精工,台湾富晶(DW01,FS301,302),理光,MOTOROLA等封装形式主要为SOT26,SOT6

过电流及短路电流

因为不明原因(放电时或正负极遭金属物误触)造成过电流或短路,为确保安全,必须使其立即停止放电。 过电流保护 IC 原理为,当放电电流过大或短路情况产生时,保护 IC 将启动过(短路)电流保护,此时过电流的检测是将功率 MOSFET 的 Rds(on) 当成感应阻抗用以监测其电压的下降情形,如果比所定的过电流检测电压还高则停止放电,运算公式为:

V- = I × Rds(on) × 2(V- 为过电流检测电压,I 为放电电流)。

假设 V- = 0.2V,Rds(on) = 25mΩ,则保护电流的大小为 I = 4A。

同样地,过电流检测也必须设有延迟时间以防有突发电流流入时产生误动作。

通常在过电流产生后,若能去除过电流因素(例如马上与负载脱离),将会恢复其正常状态,可以再进行正常的充放电动作。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 151,829评论 1 331
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 64,603评论 1 273
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 101,846评论 0 226
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 42,600评论 0 191
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 50,780评论 3 272
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 39,695评论 1 192
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,136评论 2 293
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 29,862评论 0 182
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 33,453评论 0 229
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 29,942评论 2 233
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 31,347评论 1 242
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 27,790评论 2 236
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 32,293评论 3 221
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 25,839评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,448评论 0 181
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 34,564评论 2 249
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 34,623评论 2 249

推荐阅读更多精彩内容