密码学系列之:1Password的加密基础PBKDF2

简介

1password是一个非常优秀的密码管理软件,有了它你可以轻松对你的密码进行管理,从而不用再考虑密码泄露的问题,据1password官方介绍,它的底层使用的是PBKDF2算法对密码进行加密。

那么PBKDF2是何方神圣呢?它有什么优点可以让1password得以青睐呢?一起来看看吧。

PBKDF2和PBKDF1

PBKDF的全称是Password-Based Key Derivation Function,简单的说,PBKDF就是一个密码衍生的工具。既然有PBKDF2那么就肯定有PBKDF1,那么他们两个的区别是什么呢?

PBKDF2是PKCS系列的标准之一,具体来说他是PKCS#5的2.0版本,同样被作为RFC 2898发布。它是PBKDF1的替代品,为什么会替代PBKDF1呢?那是因为PBKDF1只能生成160bits长度的key,在计算机性能快速发展的今天,已经不能够满足我们的加密需要了。所以被PBKDF2替换了。

在2017年发布的RFC 8018(PKCS #5 v2.1)中,是建议是用PBKDF2作为密码hashing的标准。

PBKDF2和PBKDF1主要是用来防止密码暴力破解的,所以在设计中加入了对算力的自动调整,从而抵御暴力破解的可能性。

PBKDF2的工作流程

PBKDF2实际上就是将伪散列函数PRF(pseudorandom function)应用到输入的密码、salt中,生成一个散列值,然后将这个散列值作为一个加密key,应用到后续的加密过程中,以此类推,将这个过程重复很多次,从而增加了密码破解的难度,这个过程也被称为是密码加强。

我们看一个标准的PBKDF2工作的流程图:

image

从图中可以看到,初始的密码跟salt经过PRF的操作生成了一个key,然后这个key作为下一次加密的输入和密码再次经过PRF操作,生成了后续的key,这样重复很多次,生成的key再做异或操作,生成了最终的T,然后把这些最终生成的T合并,生成最终的密码。

根据2000年的建议,一般来说这个遍历次数要达到1000次以上,才算是安全的。当然这个次数也会随着CPU计算能力的加强发生变化。这个次数可以根据安全性的要求自行调整。

有了遍历之后,为什么还需要加上salt呢?加上salt是为了防止对密码进行彩虹表攻击。也就是说攻击者不能预选计算好特定密码的hash值,因为不能提前预测,所以安全性得以提高。标准salt的长度推荐是64bits,美国国家标准与技术研究所推荐的salt长度是128 bits。

详解PBKDF2的key生成流程

上面一小节,我们以一种通俗易懂的方式告诉大家,PBKDF2到底是怎么工作的。一般来说,了解到这一层也就够了,但是如果你想更加深入,了解PBKDF2的key生成的底层原理,那么还请关注这一小节。

我们上面介绍了PBKDF2是一个生成衍生key的函数,作为一个函数,那么就有输入和输出,我们先看下PBKDF2的定义:

DK = PBKDF2(PRF, Password, Salt, c, dkLen)

PBKDF2有5个函数,我们看下各个参数代表什么意思:

  • PRF 是一个伪随机散列函数,我们可以根据需要对其进行替换,比如替换成为HMAC函数。
  • Password 是主密码用来生成衍生key。
  • Salt是一个bits序列,用来对密码加盐。
  • c 是循环的次数。
  • dkLen 是生成的key要求的bits长度。
  • DK是最后生成的衍生key。

在上一节中,我们可以看到其实最后的衍生key是由好几部分组成的,上图中的每一个T都代表着衍生key的一部分,最后将这些T合并起来就得到了最终的衍生key,其公式如下:

DK = T1 + T2 + ⋯ + Tdklen/hlen
Ti = F(Password, Salt, c, i)

上面的F是c次遍历的异或链。其公式如下:

F(Password, Salt, c, i) = U1 ^ U2 ^ ⋯ ^ Uc

其中:

U1 = PRF(Password, Salt + INT_32_BE(i))
U2 = PRF(Password, U1)
⋮
Uc = PRF(Password, Uc−1)

HMAC密码碰撞

如果PBKDF2的PRF使用的是HMAC的话,那么将会发送一些很有意思的问题。对于HMAC来说,如果密码的长度大于HMAC可以接受的范围,那么该密码会首先被做一次hash运算,然后hash过后的字符串会被作为HMAC的输入。

我们举个例子,如果用户输入的密码是:

    Password: plnlrtfpijpuhqylxbgqiiyipieyxvfsavzgxbbcfusqkozwpngsyejqlmjsytrmd

经过一次HMAC-SHA1运算之后,得到:

    SHA1 (hex): 65426b585154667542717027635463617226672a

将其转换成为字符串得到:

    SHA1 (ASCII): eBkXQTfuBqp'cTcar&g*

所以说,如果使用PBKDF2-HMAC-SHA1的加密方式的话,下面两个密码生成衍生key是一样的。

    "plnlrtfpijpuhqylxbgqiiyipieyxvfsavzgxbbcfusqkozwpngsyejqlmjsytrmd"
    "eBkXQTfuBqp'cTcar&g*"

PBKDF2的缺点

虽然PBKDF2可以通过调节循环遍历的次数来提高密码破解的难度。但是可以为其研制特殊的处理器,只需要很少的RAM就可以对其进行破解。为此bcrypt 和 scrypt 等依赖于大量RAM的加密算法,这样就导致那些廉价的ASIC处理器无用武之地。

总结

以上就是PBKDF2的简单介绍,想要详细了解更多的朋友,可以参考我的其他关于密码学的文章。

本文已收录于 http://www.flydean.com/41-pbkdf2/

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 157,924评论 4 360
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 66,902评论 1 290
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 107,716评论 0 239
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,783评论 0 203
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,166评论 3 286
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,510评论 1 216
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,784评论 2 311
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,476评论 0 196
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,196评论 1 241
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,459评论 2 243
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 31,978评论 1 258
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,321评论 2 252
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 32,964评论 3 235
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,046评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,803评论 0 193
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,530评论 2 271
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,420评论 2 265

推荐阅读更多精彩内容