MySQL学习比比- MySQL 8.0 新特性:哈希连接(Hash Join)

MySQL 开发组于 2019 年 10 月 14 日 正式发布了 MySQL 8.0.18 GA 版本,带来了一些新特性和增强功能。

其中最引人注目的莫过于多表连接查询支持 hash join 方式了。

我们先来看看官方的描述:

点击查看 官方描述

MySQL 实现了用于内连接查询的 hash join 方式。

例如,从 MySQL 8.0.18 开始以下查询可以使用 hash join 进行连接查询:

SELECT * 
    FROM t1 
    JOIN t2 
        ON t1.c1=t2.c1;

Hash join 不需要索引的支持。

大多数情况下,hash join 比之前的 Block Nested-Loop 算法在没有索引时的等值连接更加高效。

使用以下语句创建三张测试表:

CREATE TABLE t1 (c1 INT, c2 INT);
CREATE TABLE t2 (c1 INT, c2 INT);
CREATE TABLE t3 (c1 INT, c2 INT);

使用EXPLAIN FORMAT=TREE命令可以看到执行计划中的 hash join,例如:

mysql> EXPLAIN FORMAT=TREE
    -> SELECT * 
    ->     FROM t1 
    ->     JOIN t2 
    ->         ON t1.c1=t2.c1\G
*************************** 1. row ***************************
EXPLAIN: -> Inner hash join (t2.c1 = t1.c1)  (cost=0.70 rows=1)
    -> Table scan on t2  (cost=0.35 rows=1)
    -> Hash
        -> Table scan on t1  (cost=0.35 rows=1)

必须使用 EXPLAIN 命令的 FORMAT=TREE 选项才能看到节点中的 hash join。

另外,EXPLAIN ANALYZE命令也可以显示 hash join 的使用信息。

这也是该版本新增的一个功能。多个表之间使用等值连接的的查询也会进行这种优化。

例如以下查询:

SELECT * 
    FROM t1
    JOIN t2 
        ON (t1.c1 = t2.c1 AND t1.c2 < t2.c2)
    JOIN t3 
        ON (t2.c1 = t3.c1);

在以上示例中,任何其他非等值连接的条件将会在连接操作之后作为过滤器使用。

可以通过EXPLAIN FORMAT=TREE命令的输出进行查看:

mysql> EXPLAIN FORMAT=TREE
    -> SELECT * 
    ->     FROM t1
    ->     JOIN t2 
    ->         ON (t1.c1 = t2.c1 AND t1.c2 < t2.c2)
    ->     JOIN t3 
    ->         ON (t2.c1 = t3.c1)\G
*************************** 1. row ***************************
EXPLAIN: -> Inner hash join (t3.c1 = t1.c1)  (cost=1.05 rows=1)
    -> Table scan on t3  (cost=0.35 rows=1)
    -> Hash
        -> Filter: (t1.c2 < t2.c2)  (cost=0.70 rows=1)
            -> Inner hash join (t2.c1 = t1.c1)  (cost=0.70 rows=1)
                -> Table scan on t2  (cost=0.35 rows=1)
                -> Hash
                    -> Table scan on t1  (cost=0.35 rows=1)

从以上输出同样可以看出,包含多个等值连接条件的查询也可以(会)使用多个 hash join 连接。

但是,如果任何连接语句(ON)中没有使用等值连接条件,将不会采用 hash join 连接方式。

例如:

mysql> EXPLAIN FORMAT=TREE
    ->     SELECT * 
    ->         FROM t1
    ->         JOIN t2 
    ->             ON (t1.c1 = t2.c1)
    ->         JOIN t3 
    ->             ON (t2.c1 < t3.c1)\G
*************************** 1. row ***************************
EXPLAIN: <not executable by iterator executor>

</pre>

此时,将会采用性能更慢的 block nested loop 连接算法。

这与 MySQL 8.0.18 之前版本中没有索引时的情况一样:

mysql> EXPLAIN
    ->     SELECT * 
    ->         FROM t1
    ->         JOIN t2 
    ->             ON (t1.c1 = t2.c1)
    ->         JOIN t3 
    ->             ON (t2.c1 < t3.c1)\G             
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: t1
   partitions: NULL
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 1
     filtered: 100.00
        Extra: NULL
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: t2
   partitions: NULL
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 1
     filtered: 100.00
        Extra: Using where; Using join buffer (Block Nested Loop)
*************************** 3. row ***************************
           id: 1
  select_type: SIMPLE
        table: t3
   partitions: NULL
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 1
     filtered: 100.00
        Extra: Using where; Using join buffer (Block Nested Loop)

Hash join 连接同样适用于不指定查询条件时的笛卡尔积(Cartesian product),例如:

mysql> EXPLAIN FORMAT=TREE
    -> SELECT *
    ->     FROM t1
    ->     JOIN t2
    ->     WHERE t1.c2 > 50\G
*************************** 1. row ***************************
EXPLAIN: -> Inner hash join  (cost=0.70 rows=1)
    -> Table scan on t2  (cost=0.35 rows=1)
    -> Hash
        -> Filter: (t1.c2 > 50)  (cost=0.35 rows=1)
            -> Table scan on t1  (cost=0.35 rows=1)

默认配置时,MySQL 所有可能的情况下都会使用 hash join。

同时提供了两种控制是否使用 hash join 的方法:

  • 在全局或者会话级别设置服务器系统变量 optimizer_switch 中的 hash_join=on 或者 hash_join=off 选项。默认为 hash_join=on。

  • 在语句级别为特定的连接指定优化器提示 HASH_JOIN 或者 NO_HASH_JOIN。

可以通过系统变量 join_buffer_size 控制 hash join 允许使用的内存数量;
hash join 不会使用超过该变量设置的内存数量。

如果 hash join 所需的内存超过该阈值,MySQL 将会在磁盘中执行操作。

需要注意的是,如果 hash join 无法在内存中完成,并且打开的文件数量超过系统变量 open_files_limit 的值,连接操作可能会失败。

为了解决这个问题,可以使用以下方法之一:

  • 增加 join_buffer_size 的值,确保 hash join 可以在内存中完成。
  • 增加 open_files_limit 的值。

接下来我们比较一下 hash join 和 block nested loop 的性能,首先分别为 t1、t2 和 t3 生成 1000000 条记录:

set join_buffer_size=2097152000;

SET @@cte_max_recursion_depth = 99999999;

INSERT INTO t1
-- INSERT INTO t2
-- INSERT INTO t3
WITH RECURSIVE t AS (
  SELECT 1 AS c1, 1 AS c2
  UNION ALL
  SELECT t.c1 + 1, t.c1 * 2
    FROM t
   WHERE t.c1 < 1000000
)
SELECT *
  FROM t;

</pre>

没有索引情况下的 hash join:

mysql> EXPLAIN ANALYZE
    -> SELECT COUNT(*)
    ->   FROM t1
    ->   JOIN t2 
    ->     ON (t1.c1 = t2.c1)
    ->   JOIN t3 
    ->     ON (t2.c1 = t3.c1)\G
*************************** 1. row ***************************
EXPLAIN: -> Aggregate: count(0)  (actual time=22993.098..22993.099 rows=1 loops=1)
    -> Inner hash join (t3.c1 = t1.c1)  (cost=9952535443663536.00 rows=9952435908880402) (actual time=14489.176..21737.032 rows=1000000 loops=1)
        -> Table scan on t3  (cost=0.00 rows=998412) (actual time=0.103..3973.892 rows=1000000 loops=1)
        -> Hash
            -> Inner hash join (t2.c1 = t1.c1)  (cost=99682753413.67 rows=99682653660) (actual time=5663.592..12236.984 rows=1000000 loops=1)
                -> Table scan on t2  (cost=0.01 rows=998412) (actual time=0.067..3364.105 rows=1000000 loops=1)
                -> Hash
                    -> Table scan on t1  (cost=100539.40 rows=998412) (actual time=0.133..3395.799 rows=1000000 loops=1)

1 row in set (23.22 sec)

mysql> SELECT COUNT(*)
    ->   FROM t1
    ->   JOIN t2 
    ->     ON (t1.c1 = t2.c1)
    ->   JOIN t3 
    ->     ON (t2.c1 = t3.c1);
+----------+
| COUNT(*) |
+----------+
|  1000000 |
+----------+
1 row in set (12.98 sec)

实际运行花费了 12.98 秒。这个时候如果使用 block nested loop:

mysql> EXPLAIN FORMAT=TREE
    -> SELECT /*+  NO_HASH_JOIN(t1, t2, t3) */ COUNT(*)
    ->   FROM t1
    ->   JOIN t2 
    ->     ON (t1.c1 = t2.c1)
    ->   JOIN t3 
    ->     ON (t2.c1 = t3.c1)\G
*************************** 1. row ***************************
EXPLAIN: <not executable by iterator executor>

1 row in set (0.00 sec)

SELECT /*+  NO_HASH_JOIN(t1, t2, t3) */ COUNT(*)
  FROM t1
  JOIN t2 
    ON (t1.c1 = t2.c1)
  JOIN t3 
    ON (t2.c1 = t3.c1);

EXPLAIN 显示无法使用 hash join。查询跑了几十分钟也没有出结果,其中一个 CPU 使用率到了 100%;因为一直在执行嵌套循环(1000000 的 3 次方)。再看有索引时的 block nested loop 方法,增加索引:

mysql> CREATE index idx1 ON t1(c1);
Query OK, 0 rows affected (7.39 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> CREATE index idx2 ON t2(c1);
Query OK, 0 rows affected (6.77 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> CREATE index idx3 ON t3(c1);
Query OK, 0 rows affected (7.23 sec)
Records: 0  Duplicates: 0  Warnings: 0

查看执行计划并运行相同的查询语句:

mysql> EXPLAIN ANALYZE
    -> SELECT COUNT(*)
    ->   FROM t1
    ->   JOIN t2 
    ->     ON (t1.c1 = t2.c1)
    ->   JOIN t3 
    ->     ON (t2.c1 = t3.c1)\G
*************************** 1. row ***************************
EXPLAIN: -> Aggregate: count(0)  (actual time=47684.034..47684.035 rows=1 loops=1)
    -> Nested loop inner join  (cost=2295573.22 rows=998412) (actual time=0.116..46363.599 rows=1000000 loops=1)
        -> Nested loop inner join  (cost=1198056.31 rows=998412) (actual time=0.087..25788.696 rows=1000000 loops=1)
            -> Filter: (t1.c1 is not null)  (cost=100539.40 rows=998412) (actual time=0.050..5557.847 rows=1000000 loops=1)
                -> Index scan on t1 using idx1  (cost=100539.40 rows=998412) (actual time=0.043..3253.769 rows=1000000 loops=1)
            -> Index lookup on t2 using idx2 (c1=t1.c1)  (cost=1.00 rows=1) (actual time=0.012..0.015 rows=1 loops=1000000)
        -> Index lookup on t3 using idx3 (c1=t1.c1)  (cost=1.00 rows=1) (actual time=0.012..0.015 rows=1 loops=1000000)

1 row in set (47.68 sec)

mysql> SELECT COUNT(*)
    ->   FROM t1
    ->   JOIN t2 
    ->     ON (t1.c1 = t2.c1)
    ->   JOIN t3 
    ->     ON (t2.c1 = t3.c1);
+----------+
| COUNT(*) |
+----------+
|  1000000 |
+----------+
1 row in set (19.56 sec)

实际运行花费了 19.56 秒。所以在我们这个场景中的测试结果如下:

再增加一个 Oracle 12c 中无索引时 hash join 结果:1.282 s。

再增加一个 PostgreSQL 11.5 中无索引时 hash join 结果:6.234 s。

再增加一个 SQL 2017 中无索引时 hash join 结果:5.207 s。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 158,736评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,167评论 1 291
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,442评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,902评论 0 204
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,302评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,573评论 1 216
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,847评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,562评论 0 197
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,260评论 1 241
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,531评论 2 245
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,021评论 1 258
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,367评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,016评论 3 235
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,068评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,827评论 0 194
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,610评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,514评论 2 269

推荐阅读更多精彩内容