计算机网络篇——传输层

计算机网络系列

上一篇文章中讲到网络层是负责把数据报准确的传送到目的主机,但是仅仅传输到目的主机还不够,因为一台主机上会有多个应用,要想在应用间通信,还得加一个应用间的标识(端口号)。这个工作就是由传输层完成。传输层主要讲两个协议,即UDP和TCP。

UDP

UDP不提供复杂的控制机制,利用IP提供面向无连接的通信服务。并且它是将应用程序发来的数据在收到的那一刻,立即按照原样发送到网络上的一种机制。

由于UDP面向无连接,它可以随时发送数据。再加上UDP的处理既简单又高效。因此经常用于以下几个方面:

  • 包总量较少的通信(DNS、SNMP)
  • 视频、音频等多媒体通信(即时通信)
  • 限定于LAN等特定网络中的应用通信
  • 广播通信(广播、多播)

UDP首部

UDP数据报格式

校验和用来判断数据在传输过程中是否损坏。计算这个校验和的时候,不仅考虑源端口号和目标端口号,还要考虑 IP 首部中的源 IP 地址,目标 IP 地址和协议号(这些又称为 UDP 伪首部)。这是因为以上五个要素用于识别通信时缺一不可,如果校验和只考虑端口号,那么另外三个要素收到破坏时,应用就无法得知。这有可能导致不该收到包的应用收到了包,该收到包的应用反而没有收到。由于UDP比较简单,这里就不做过多的讲解。

TCP

TCP与UDP的区别相当大。TCP是一种面向连接的协议,只有在确认通信对方存在时才会发送数据。它充分地实现了数据传输时各种控制功能,可以进行丢包时的重发控制,还可以对次序乱掉的分包进行顺序控制。

所以根据TCP的这些机制,它可以提供可靠传输。

TCP建立连接的时候需要三次握手,断开连接的时候需要四次挥手:

TCP的连接与断开

在建立连接的同时,也可以确定发送数据包的单位,我们称其为“最大消息长度”(MSS)。建立连接后,按照MSS的大小对数据进行分割发送。

序列号与确认应答提高可靠性

在TCP中,发送端以段为单位进行发送数据,每一个段都有一个序列号,当发送端的数据到达接收主机时,接收端主机会返回一个确认应答(ACK)。

数据包丢失的情况
确认应答丢失的情况

数据丢失无非就是数据包丢失和确认应答丢失两种情况,上图都已经解释得很清楚。重传超时时间(RTO)不是一个固定值,这个时间总是略大于连接往返时间(RTT,Round Trip Time)。这个设定可以这样理解:“数据发送给对方,再返回到我这里,假设需要 10 秒,那我就等待 12秒,如果超过 12 秒,那估计就是回不来了。”

窗口控制

由于TCP以段位单位,每次发一个段进行一次确认应答的处理,这样的效率太低了。所以就引入了窗口这个概念。

滑动窗口

窗口大小指无需等待确认应答而可以继续发送数据的最大值。上图的窗口大小为4个段。使用窗口后,它无需等待确认应答就可以继续发送数据包的最大数量。

窗口控制

通过窗口控制,使用了大量缓冲区,实现了对多个段同时进行确认应答的功能。这样就大大提升了性能。引入窗口的概念后,被发送的数据不能立刻丢弃,需要缓存起来以备将来需要重发。

高速重发控制

如果发送的数据丢失,发送端会一直收到相应的数据的序号的确认应答。发送端如果连续3次收到同一个确认应答,就会将其对应的数据进行重发。

如果是确认应答丢失,可以通过下一个确认应答进行确认。因为每一个确认都表示

没有确认应答也不受影响

拥塞控制

有了TCP窗口后,收发主机之间即时不再以一个数据段为单位发送确认应答,也能连续发送大量数据包。然而,如果在通信刚开始时就发送大量数据,有可能引发网络拥堵等一些其他问题。因此,TCP采用了慢启动机制。

慢启动

慢启动的过程如下:

  1. 通信开始时,发送方的拥塞窗口大小为 1。每收到一个 ACK 确认后,拥塞窗口翻倍。
  2. 由于指数级增长非常快,很快地,就会出现确认包超时。
  3. 此时设置一个“慢启动阈值”,它的值是当前拥塞窗口大小的一半。
  4. 同时将拥塞窗口大小设置为 1,重新进入慢启动过程。
  5. 由于现在“慢启动阈值”已经存在,当拥塞窗口大小达到阈值时,不再翻倍,6. 而是线性增加。
  6. 随着窗口大小不断增加,可能收到三次重复确认应答,进入“快速重发”阶段。
  7. 这时候,TCP 将“慢启动阈值”设置为当前拥塞窗口大小的一半,再将拥塞窗口大小设置成阈值大小(也有说加 3)。
  8. 拥塞窗口又会线性增加,直至下一次出现三次重复确认应答或超时。
慢启动的过程

TCP首部

TCP首部

看完前面的介绍其实这些字段的意义大家可能也理解得差不多了,我就简单的说一个关键字段吧:

  • 序列号:它表示发送数据的位置,假设当前的序列号为 s,发送数据长度为 l,则下次发送数据时的序列号为 s + l。在建立连接时通常由计算机生成一个随机数作为序列号的初始值。
  • 确认应答号:它等于下一次应该接收到的数据的序列号。假设发送端的序列号为 s,发送数据的长度为 l,那么接收端返回的确认应答号也是 s + l。发送端接收到这个确认应答后,可以认为这个位置以前所有的数据都已被正常接收。
  • 数据偏移:TCP 首部的长度,单位为 4 字节。如果没有可选字段,那么这里的值就是 5。表示 TCP 首部的长度为 20 字节。
  • 控制位:该字段长度为 8 比特,分别有 8 个控制标志。依次是 CWR,ECE,URG,ACK,PSH,RST,SYN 和 FIN。
  • 窗口大小:用于表示从应答号开始能够接受多少个 8 位字节。如果窗口大小为 0,可以发送窗口探测。
  • 紧急指针:尽在 URG 控制位为 1 时有效。表示紧急数据的末尾在 TCP 数据部分中的位置。通常在暂时中断通信时使用(比如输入 Ctrl + C)。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 156,265评论 4 359
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 66,274评论 1 288
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 106,087评论 0 237
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,479评论 0 203
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 51,782评论 3 285
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,218评论 1 207
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,594评论 2 309
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,316评论 0 194
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 33,955评论 1 237
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,274评论 2 240
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 31,803评论 1 255
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,177评论 2 250
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 32,732评论 3 229
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 25,953评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,687评论 0 192
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,263评论 2 267
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,189评论 2 258

推荐阅读更多精彩内容