优质广告供应商

广告是为了更好地支持作者创作

算法复杂度分析与最大子串问题

算法复杂度分析

算法复杂度基本定义

算法复杂度分析基于以下四条定义:

  • 如果存在常数c与$n_{0}$使$N \geq n_{0} $时,有$T(N) \leq cf(N)$,则记 $T(N) = O(f(N))$
  • 如果存在常数c与$n_{0}$使$N \geq n_{0} $时,有$T(N) \geq cf(N)$,则记 $T(N) = \Omega(f(N))$
  • 当且仅当$T(N) = O(f(N))$且$T(N) = \Omega(f(N))$时,记$T(N) = \Theta(f(N))$
  • 若$T(N) = O(f(N))$且$T(N) \neq \Theta(f(N))$时,记$T(N) = o(f(N))$

若使用比较简单(不甚准确)的表达:

  • 当T(N)增长的比f(N)慢的时候,认为$T(N) = O(f(N))$
  • 当T(N)增长的比f(N)快的时候,认为$T(N) = \Omega(f(N))$
  • 当T(N)和f(N)一样快的时候,认为$T(N) = \Theta(f(N))$

算法复杂度分析运算

  • 加法:T1(N)=O(f(x)),T2(N)=O(g(x)),则T1(N) + T2(N) = max{O(f(x)),O(g(x))}
  • 乘法:同上假设,T1(N)* T2(N) = O(f(x) * g(x))

算法时间估算

时间估算中,认为每个操作花费时间为1,跳转,判断等所消耗时间可以忽略,例如

for(i = 0;i < N;i++) {
  for(j = 0;j < N;j++) {
    a += i+ j;
  }  
  b += i;
}

分析以上算法,内循环一次耗时N,外循环一次耗时$N * (N + 1) = N^{2} + N$,时间估算中忽略常数项和低次项,该算法花费时间$O(N^{2})$,由以上可以得出一些结论:

  • 顺序语句:时间估算为语句中耗时最多的一条
  • 判断语句:时间估算为不超过所有分支运算时间之和(与选择最耗时的一个分支相同)
  • 循环语句:时间估算为循环次数的乘积(包括嵌套循环)

最大子序列问题

问题

已知一个序列,要求求和最大的连续子序列的和。例如输入-2,11,-4,13,-5,-2,输出20(11-4+13)

求解

解法一:真.暴力求解

考虑最简单直接的解法,计算出以某个数开头的所有子序列和,取出最大的值

func solution1(data []int, num int) int {
    max_sum, this_sum := 0, 0
    for i := 0; i < num; i++ {
        for j := i; j < num; j++ {
            this_sum = 0
            for k := i; k < j; k++ {
                this_sum += data[k]
            }
            if this_sum > max_sum {
                max_sum = this_sum
            }
        }
    }
    return max_sum
} //done: 1.1903458s

解法二:改进.暴力求解

考虑以上求和的部分,每改一个j(结尾位置)都要重新计算全部子序列和。其实前面的和是被重复计算了,计算下一个子序列和时只需要加上结尾的值就可以了。

func solution2(data []int) int {
    max_sum, this_sum, num := 0, 0, len(data)
    for i := 0; i < num; i++ {
        this_sum = 0
        for j := i; j < num; j++ {
            this_sum += data[j]
            if this_sum > max_sum {
                max_sum = this_sum
            }
        }
    }
    return max_sum
} // done: 1.115286s

解法三:分治法

分治法解决这个问题的方法是:找出左侧一半的最大子串,找出右侧一半的最大子串,找出跨越左右分界的最大子串(左侧终点确定,右侧起点确定),比较得最大值。

func solution3(data []int) int {
    if len(data) == 1 {
        return data[0]
    }
    split_num := int(len(data) / 2)
    // fmt.Println(split_num)
    left_max := solution3(data[:split_num])
    right_max := solution3(data[split_num:])

    mid_left_max, mid_right_max := 0, 0
    mid_left, mid_right := 0, 0
    for i := split_num; i >= 0; i-- {
        mid_left += data[i]
        if mid_left > mid_left_max {
            mid_left_max = mid_left
        }
    }
    for i := split_num + 1; i < len(data); i++ {
        mid_right += data[i]
        if mid_right > mid_right_max {
            mid_right_max = mid_right
        }
    }
    mid_max := mid_left_max + mid_right_max
    if (mid_max > left_max) && (mid_max > right_max) {
        return mid_max
    } else if left_max > right_max {
        return left_max
    } else {
        return right_max
    }
} //done: 1.1223139s

解法四:动态规划/贪心算法

该算法原理还未理解透彻,正在研究中

func solution4(data []int) int {
    max_sum, this_sum, num := 0, 0, len(data)
    for i := 0; i < num; i++ {
        this_sum += data[i]
        if this_sum < 0 {
            this_sum = 0
        } else if this_sum > max_sum {
            max_sum = this_sum
        }
    }
    return max_sum
} //done: 1.1323284s

优质广告供应商

广告是为了更好地支持作者创作

推荐阅读更多精彩内容

  • 算法和数据结构 [TOC] 算法 函数的增长 渐近记号 用来描述算法渐近运行时间的记号,根据定义域为自然数集$N=...
    wxainn阅读 798评论 0 0
  • 算法复杂度 时间复杂度 空间复杂度 什么是时间复杂度 算法执行时间需通过依据该算法编制的程序在计算机上运行时所消耗...
    KODIE阅读 2,803评论 0 9
  • 优质广告供应商

    广告是为了更好地支持作者创作

  • 什么是算法的复杂度 算法复杂度,即算法在编写成可执行程序后,运行时所需要的资源,资源包括时间资源和内存资源。 一个...
    儒生阅读 1,242评论 0 2
  • 一幅临摹作品 第一次看到猫猫发的原图,觉得很有意思,猫猫问有谁想尝试一下,想了想自己可以试试。 画完草图,心想:什...
    爱吃喵的松鼠桂鱼喵阅读 554评论 12 16
  • 日子就这样不紧不慢的过着,华晖每天照样上班下班,和平时没什么两样。在公司,华晖和于丽虽然各自都对对方目前的生活充满...
    米兰的老斑鸠阅读 192评论 0 0