并发辅助类CountDownLatch的使用和源码

CountDownLatch类位于java.util.concurrent包下,利用它可以实现类似计数器的功能。比如有一个任务A,它要等待其他10个线程的任务执行完毕之后才能执行,此时就可以利用CountDownLatch来实现这种功能了。

CountDownLatch是通过一个计数器来实现的,计数器的初始值为那10个线程的数量也就是10。每当一个线程完成了自己的任务后,计数器的值就会减1。当计数器值到达0时,它表示所有的线程已经完成了任务,然后在闭锁上await()等待的线程就可以恢复执行任务。

下面我们来详细分析

构造函数:

public CountDownLatch(int count) {  };  //参数count为计数值,也就是需要等几个线程结束的个数

它有三个主要方法:

public void await() throws InterruptedException { };   
public boolean await(long timeout, TimeUnit unit) throws InterruptedException { };  
public void countDown() { };  

await():调用await()方法的线程会被挂起,它会等待直到count值为0才继续执行
await(long timeout, TimeUnit unit):和await()类似,只不过等待一定的时间后count值还没变为0的话就会继续执行
countDown() :将count值减1,通常在等待的线程完成时调用,当10个线程都执行完,都减1后,count值为0,被挂起的线程就可以启动了。

实例:使用await在主线程阻塞,当每个子线程执行完了,就调用latch.countDown()一次,知道最后count的值为0,才解开主线程的等待;

public static void main(String[] args) {

        final CountDownLatch latch = new CountDownLatch(2);

        new Thread() {

            public void run() {

                System.out.println("子线程" + Thread.currentThread().getName() + "正在执行");

                System.out.println("子线程" + Thread.currentThread().getName() + "执行完毕");

                latch.countDown();

            };

        }.start();

        new Thread() {

            public void run() {

                System.out.println("子线程" + Thread.currentThread().getName() + "正在执行");

                System.out.println("子线程" + Thread.currentThread().getName() + "执行完毕");

                latch.countDown();

            };

        }.start();

        try {

            System.out.println("等待2个子线程执行完毕...");

            latch.await();

            System.out.println("2个子线程已经执行完毕");

            System.out.println("继续执行主线程");

        } catch (InterruptedException e) {

            e.printStackTrace();

        }

    }

输出结果:

子线程Thread-0正在执行
子线程Thread-0执行完毕
等待2个子线程执行完毕...
子线程Thread-1正在执行
子线程Thread-1执行完毕
2个子线程已经执行完毕
继续执行主线程

从输出上我们可以知道这个CountDownLatch的使用方法和执行过程了,接下来我们通过对它的主要方法的分析来看一下实现原理。

源码解析:

1.CountDownLatch(int count)

这个是CountDownLatch的构造函数,我们跟进看一下

public CountDownLatch(int count) {
        if (count < 0) throw new IllegalArgumentException("count < 0");
        this.sync = new Sync(count);
    }

先判断是否count的值是否正常,如果小于0,直接抛出异常,否则创建一个Sync对象

private static final class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = 4982264981922014374L;

        Sync(int count) {
            setState(count);
        }

        int getCount() {
            return getState();
        }

        protected int tryAcquireShared(int acquires) {
            return (getState() == 0) ? 1 : -1;
        }

        protected boolean tryReleaseShared(int releases) {
            // Decrement count; signal when transition to zero
            for (;;) {
                int c = getState();
                if (c == 0)
                    return false;
                int nextc = c-1;
                if (compareAndSetState(c, nextc))
                    return nextc == 0;
            }
        }
    }

我们看到这里使用了AQS的Sync,唯一与lock不同的是把state设置为了count,然后获取锁的逻辑tryAcquireShared方法也做了对应的调整,这里获取锁的话判断state是否为0。

2.await()

await方法用于阻塞线程,也就是令当前线程阻塞直到拿到锁(state==0也就是count==0)

public final void acquireSharedInterruptibly(int arg)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    }

先判断是否中断,如果中断的话响应中断并抛出异常,结束阻塞,然后通过tryAcquireShared获取锁,我们来看tryAcquireShared方法

protected int tryAcquireShared(int acquires) {
            return (getState() == 0) ? 1 : -1;
        }

拿到锁的唯一条件就是state==0,也就是子线程通过countDown()方法把count变为0才可以。我们接下来先看doAcquireSharedInterruptibly()上锁的过程。

3.doAcquireSharedInterruptibly()
private void doAcquireSharedInterruptibly(int arg)
        throws InterruptedException {
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return;
                    }
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

这里的逻辑和lock方法的逻辑基本一致,只是稍作修改,主线程通过parkAndCheckInterrupt方法进行了阻塞。

4.countDown()
public void countDown() {
        sync.releaseShared(1);
    }
public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }

先调用了tryReleaseShared来解锁,我们看一下这个过程

protected boolean tryReleaseShared(int releases) {
            // Decrement count; signal when transition to zero
            for (;;) {
                int c = getState();
                if (c == 0)
                    return false;
                int nextc = c-1;
                if (compareAndSetState(c, nextc))
                    return nextc == 0;
            }
        }

拿到state,然后通过CAS把state-1,最后返回Boolean值,如果state==0,说明锁释放返回true,如果state>0,返回false,这里也就证明了我们的猜想,countdown方法就是来把state每次减一的,直到所有子线程执行完,减为0,锁释放。我们继续看锁释放后的执行过程。

5.doReleaseShared()
private void doReleaseShared() {
        /*
         * Ensure that a release propagates, even if there are other
         * in-progress acquires/releases.  This proceeds in the usual
         * way of trying to unparkSuccessor of head if it needs
         * signal. But if it does not, status is set to PROPAGATE to
         * ensure that upon release, propagation continues.
         * Additionally, we must loop in case a new node is added
         * while we are doing this. Also, unlike other uses of
         * unparkSuccessor, we need to know if CAS to reset status
         * fails, if so rechecking.
         */
        for (;;) {
            Node h = head;
            if (h != null && h != tail) {
                int ws = h.waitStatus;
                if (ws == Node.SIGNAL) {
                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                        continue;            // loop to recheck cases
                    unparkSuccessor(h);
                }
                else if (ws == 0 &&
                         !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                    continue;                // loop on failed CAS
            }
            if (h == head)                   // loop if head changed
                break;
        }
    }

这里的步骤也和lock的释放过程类似,最后通过waitStatus的判断来执行unparkSuccessor()唤醒阻塞的线程。

6.setHeadAndPropagate()

当唤醒await的线程后,会执行第3步doAcquireSharedInterruptibly()里的setHeadAndPropagate()

private void setHeadAndPropagate(Node node, int propagate) {
        Node h = head; // Record old head for check below
        setHead(node);
        if (propagate > 0 || h == null || h.waitStatus < 0 ||
            (h = head) == null || h.waitStatus < 0) {
            Node s = node.next;
            if (s == null || s.isShared())
                doReleaseShared();
        }
    }

可以看到,把唤醒的node设置为了head节点,也就是node拿到锁可以继续执行了,那么如果有其它的await也在等待呢?此时count为0,其它的肯定也要向下执行,是怎么连续唤醒的呢,我们看本方法里的Node s = node.next;这里判断后续阻塞节点,如果存在,就执行 doReleaseShared();持续唤醒,doReleaseShared()在也就是第5步,他会解除head节点的next的阻塞,然后再执行本步骤,设置为head,循环唤醒。

最后:

这里循环唤醒也是共享锁的实现方式。在这里我们也再次印证了AQS是java.util.concurrent包下几乎所有类的实现核心,像CountDownLatch、CyclicBarrier和Semaphore三大辅助类,lock等都是基于AQS来实现自己的控制逻辑的。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 156,907评论 4 360
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 66,546评论 1 289
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 106,705评论 0 238
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,624评论 0 203
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 51,940评论 3 285
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,371评论 1 210
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,672评论 2 310
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,396评论 0 195
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,069评论 1 238
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,350评论 2 242
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 31,876评论 1 256
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,243评论 2 251
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 32,847评论 3 231
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,004评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,755评论 0 192
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,378评论 2 269
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,266评论 2 259