kaggle实战——泰坦尼克号生还预测

数据分析

train.csv的属性有:

属性名 定义 取值
PassengerId 乘客编号 1-891
Suvived 生还情况 0, 1
Pclass 票的等级 1,2,3
Name 乘客姓名 Braund, Mr. Owen Harris
Sex 性别 male,female
Age 年龄 数字,有缺失值
SibSp 兄弟姐妹/配偶在船上 0-8
Parch 父母/子女在船上 0-6
Ticket 船票编号 A/5 21171
Fare 票价 7.25
Cabin 船舱号 C85,有缺失值
Embark 登船港 S,C,Q

test.csv缺少Survived字段,也是需要我们预测的

数据预处理

import warnings
warnings.filterwarnings('ignore')
import pandas as pd 
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

预览数据

train = pd.read_csv("train.csv")
test = pd.read_csv('test.csv')
train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId    891 non-null int64
Survived       891 non-null int64
Pclass         891 non-null int64
Name           891 non-null object
Sex            891 non-null object
Age            714 non-null float64
SibSp          891 non-null int64
Parch          891 non-null int64
Ticket         891 non-null object
Fare           891 non-null float64
Cabin          204 non-null object
Embarked       889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB

定义dummies函数,将某个离散型特征的所有取值变为特征

def dummies(col,train,test):
    train_dum = pd.get_dummies(train[col])
    test_dum = pd.get_dummies(test[col])
    train = pd.concat([train, train_dum], axis=1)
    test = pd.concat([test,test_dum],axis=1)
    train.drop(col,axis=1,inplace=True)
    test.drop(col,axis=1,inplace=True)
    return train, test

# get rid of the useless cols
dropping = ['PassengerId', 'Name', 'Ticket']
train.drop(dropping,axis=1, inplace=True)
test.drop(dropping,axis=1, inplace=True)

Pclass处理

观察Pclass和survived的关系,等级越高,生还率越大
将Pclass分解为1,2,3三个特征

print(train.Pclass.value_counts())
sns.factorplot("Pclass",'Survived',data=train,order=[1,2,3])

train, test = dummies('Pclass',train,test)
3    491
1    216
2    184
Name: Pclass, dtype: int64

Sex处理

观察Sex和Survived的关系,女性生还率显著高于男性
分解Sex为male,female,并删除原特征

print(train.Sex.value_counts(dropna=False))
sns.factorplot('Sex','Survived',data=train)
train,test = dummies('Sex',train,test)
train.drop('male',axis=1,inplace=True)
test.drop('male',axis=1,inplace=True)
male      577
female    314
Name: Sex, dtype: int64

Age处理

处理缺失值,计算平均值和方差,对缺失值进行填充
观察Age和Survived的关系,在15到30区间对结果影响较大,增加两个特征,Age小于15和Age大于15且小于30,删除Age

nan_num = len(train[train['Age'].isnull()])
age_mean = train['Age'].mean()
age_std = train['Age'].std()
filling = np.random.randint(age_mean-age_std,age_mean+age_std,size=nan_num)
train['Age'][train['Age'].isnull()==True] = filling
nan_num = train['Age'].isnull().sum()
# dealing the missing val in test
nan_num = test['Age'].isnull().sum()
# 86 null
age_mean = test['Age'].mean()
age_std = test['Age'].std()
filling = np.random.randint(age_mean-age_std,age_mean+age_std,size=nan_num)
test['Age'][test['Age'].isnull()==True]=filling
nan_num = test['Age'].isnull().sum()

s = sns.FacetGrid(train,hue='Survived',aspect=2)
s.map(sns.kdeplot,'Age',shade=True)
s.set(xlim=(0,train['Age'].max()))
s.add_legend()

def under15(row):
    result = 0.0
    if row<15:
        result = 1.0
    return result
def young(row):
    result = 0.0
    if row>=15 and row<30:
        result = 1.0
    return result
train['under15'] = train['Age'].apply(under15)
train['young'] = train['Age'].apply(young)
test['under15'] = test['Age'].apply(under15)
test['young'] = test['Age'].apply(young)

train.drop('Age',axis=1,inplace=True)
test.drop('Age',axis=1,inplace=True)

SibSp和Parch处理

发现两者值越大,生还率越低
生成组合特征family = SibSp+Parch,删除原特征

print (train.SibSp.value_counts(dropna=False))
print (train.Parch.value_counts(dropna=False))
sns.factorplot('SibSp','Survived',data=train,size=5)
sns.factorplot('Parch','Survived',data=train,szie=5)

train['family'] = train['SibSp'] +  train['Parch']
test['family'] = test['SibSp'] + test['Parch']
sns.factorplot('family','Survived',data=train,size=5)

train.drop(['SibSp','Parch'],axis=1,inplace=True)
test.drop(['SibSp','Parch'],axis=1,inplace=True)
0    608
1    209
2     28
4     18
3     16
8      7
5      5
Name: SibSp, dtype: int64
0    678
1    118
2     80
5      5
3      5
4      4
6      1
Name: Parch, dtype: int64

Fare处理

票价高的生还率较大,test里有一个缺失值,用均值填充

train.Fare.isnull().sum()
test.Fare.isnull().sum()

sns.factorplot('Survived','Fare',data=train,size=4)
s = sns.FacetGrid(train,hue='Survived',aspect=2)
s.map(sns.kdeplot,'Fare',shade=True)
s.set(xlim=(0,train['Fare'].max()))
s.add_legend()

test['Fare'].fillna(test['Fare'].median(),inplace=True)

Cabin处理

缺失值过多,删除该特征

#Cabin
print train.Cabin.isnull().sum()
print test.Cabin.isnull().sum()

train.drop('Cabin',axis=1,inplace=True)
test.drop('Cabin',axis=1,inplace=True)
687
327

Embarked处理

训练集有两个缺失值,S出现最多,用S进行填充
观察发现C港口的乘客生还率较高,分解Embarked为S, Q, C
删除S,Q,Embarked. 保留C作为新特征

#Embarked
print train.Embarked.isnull().sum()
print test.Embarked.isnull().sum()

print train['Embarked'].value_counts(dropna=False)
train['Embarked'].fillna('S',inplace=True)

sns.factorplot('Embarked','Survived',data=train,size=5)

train,test = dummies('Embarked',train,test)
train.drop(['S','Q'],axis=1,inplace=True)
test.drop(['S','Q'],axis=1,inplace=True)
2
0
S      644
C      168
Q       77
NaN      2
Name: Embarked, dtype: int64

训练模型

模型选择

主要用逻辑回归,随机森林,支持向量机和k近邻

from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC, LinearSVC
from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
from sklearn.model_selection import cross_val_score, KFold

def modeling(clf,ft,target):
    acc = cross_val_score(clf,ft,target,cv=kf)
    acc_lst.append(acc.mean())
    return 

accuracy = []
def ml(ft,target,time):
    accuracy.append(acc_lst)
     #logisticregression
    logreg = LogisticRegression()
    modeling(logreg,ft,target)
    #RandomForest
    rf = RandomForestClassifier(n_estimators=50,min_samples_split=4,min_samples_leaf=2)
    modeling(rf,ft,target)
    #svc
    svc = SVC()
    modeling(svc,ft,target)
    #knn
    knn = KNeighborsClassifier(n_neighbors = 3)
    modeling(knn,ft,target)
    
    
    # see the coefficient
    logreg.fit(ft,target)
    feature = pd.DataFrame(ft.columns)
    feature.columns = ['Features']
    feature["Coefficient Estimate"] = pd.Series(logreg.coef_[0])
    print(feature)
    return

使用不同特征组合方案

1.使用全部特征

#test1
train_ft = train.drop('Survived',axis=1)
train_y = train['Survived']

kf = KFold(n_splits=3,random_state=1)
acc_lst = []
ml(train_ft,train_y,'test_1')
  Features  Coefficient Estimate
0     Fare              0.004240
1        1              0.389135
2        2             -0.211795
3        3             -1.210494
4   female              2.689013
5  under15              1.658023
6    young              0.030681
7   family             -0.310545
8        C              0.374100

2.删除young

# testing 2, lose young
train_ft_2=train.drop(['Survived','young'],axis=1)
test_2 = test.drop('young',axis=1)
train_ft.head()

# ml
kf = KFold(n_splits=3,random_state=1)
acc_lst=[]
ml(train_ft_2,train_y,'test_2')
  Features  Coefficient Estimate
0     Fare              0.004285
1        1              0.386195
2        2             -0.207867
3        3             -1.202922
4   female              2.690898
5  under15              1.645827
6   family             -0.311682
7        C              0.376629

3.删除young,C

#test3, lose young, c
train_ft_3=train.drop(['Survived','young','C'],axis=1)
test_3 = test.drop(['young','C'],axis=1)
train_ft.head()

# ml
kf = KFold(n_splits=3,random_state=1)
acc_lst = []
ml(train_ft_3,train_y,'test_3')
  Features  Coefficient Estimate
0     Fare              0.004920
1        1              0.438557
2        2             -0.225821
3        3             -1.194444
4   female              2.694665
5  under15              1.679459
6   family             -0.322922

4.删除Fare

# test4, no FARE
train_ft_4=train.drop(['Survived','Fare'],axis=1)
test_4 = test.drop(['Fare'],axis=1)
train_ft.head()
# ml
kf = KFold(n_splits=3,random_state=1)
acc_lst = []
ml(train_ft_4,train_y,'test_4')
  Features  Coefficient Estimate
0        1              0.564754
1        2             -0.242384
2        3             -1.287715
3   female              2.699738
4  under15              1.629584
5    young              0.058133
6   family             -0.269146
7        C              0.436600

5.删除C

# test5, get rid of c 
train_ft_5=train.drop(['Survived','C'],axis=1)
test_5 = test.drop('C',axis=1)

# ml
kf = KFold(n_splits=3,random_state=1)
acc_lst = []
ml(train_ft_5,train_y,'test_5')
  Features  Coefficient Estimate
0     Fare              0.004841
1        1              0.442430
2        2             -0.232150
3        3             -1.207308
4   female              2.691465
5  under15              1.700077
6    young              0.052091
7   family             -0.320831

6.删除Fare和young

# test6, lose Fare and young
train_ft_6=train.drop(['Survived','Fare','young'],axis=1)
test_6 = test.drop(['Fare','young'],axis=1)
train_ft.head()
# ml
kf = KFold(n_splits=3,random_state=1)
acc_lst = []
ml(train_ft_6,train_y,'test_6')
  Features  Coefficient Estimate
0        1              0.562814
1        2             -0.235606
2        3             -1.274657
3   female              2.702955
4  under15              1.604597
5   family             -0.270284
6        C              0.442288

结果汇总

accuracy_df=pd.DataFrame(data=accuracy,
                         index=['test1','test2','test3','test4','test5','test6'],
                         columns=['logistic','rf','svc','knn'])
accuracy_df

确定模型和特征

综合来看,test_4和支持向量机的表现最好,所以用该模型进行预测

svc = SVC()
svc.fit(train_ft_4,train_y)
svc_pred = svc.predict(test_4)
print(svc.score(train_ft_4,train_y))

submission_test = pd.read_csv("test.csv")
submission = pd.DataFrame({"PassengerId":submission_test['PassengerId'],
                          "Survived":svc_pred})
submission.to_csv("kaggle_SVC.csv",index=False)
0.832772166105

结果提交

Reference

Titanic: Machine Learning from Disaster

TitanicLearningQI

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 158,736评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,167评论 1 291
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,442评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,902评论 0 204
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,302评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,573评论 1 216
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,847评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,562评论 0 197
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,260评论 1 241
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,531评论 2 245
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,021评论 1 258
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,367评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,016评论 3 235
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,068评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,827评论 0 194
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,610评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,514评论 2 269

推荐阅读更多精彩内容