机器学习-4:DeepLN之CNN解析

开篇废话:

很感谢谭哥的开篇废话这四个字,让我把一些废话说出来了,是时候还给谭哥了。因为废话太多会让人感觉,没有能力净废话。

今天我开始从头学习CNN,上一篇MachineLN之深度学习入门坑太多了,需要慢慢的填起来。那么我的问题是:

(1)为什么要提出cnn?

(2)cnn的结构是怎么样子的?

(3)cnn中各层的含义是什么?

看到这里你的答案是什么? 那么下面是我的答案,欢迎批评指正。

(1)为什么要提出cnn?

嫌字太多直接看图,或者简单总结为cnn参数少好学习

卷积神经网络是在神经网络的理论基础上形成的深度学习网络,它是一种特殊的多层神经网络。而传统的神经网络是一个全连接的网络结构(后面会提到),它上一层的每一个神经元与下一层的每一个神经元均有连接。这种结构有以下缺点:1、在处理声音和图像数据的时候,由于声音和图像的输入维度较高,包含数百个以上的变量,例如,输入图像的像素是100×100,假设隐含层要学习100维的特征 (即隐含层有 100 个神经元),那么全连接网络就要学100×100×100个参数,即100万个权重参数,这样的网络结构在使用BP算法训练的时候,不但训练速度慢,而且需要的训练样本的数量也越多,若训练样本数量不足,会产生过拟合现象,学习得到的模型没有实用性。2、传统神经网络的结构对输入数据的特点的考虑不足,以图像识别为例,将同一幅图像做很小的位移,传统神经网络对其会很敏感,会当成是不同的图像,无法根据训练过程对该类数据特征进行优化处理。3、传统神经网络因为与输入数据是全连接的,无法识别训练数据中的局部区域特征,可是卷积神经网络可以单独学习识别该局部区域特征。

==>看一下图(借用大神的图)吧: 主要看第一个(10的12次幂)和第四个(10k)图的参数数量相差10的8次幂倍,已经到了亿级别了。(local conv意思是每个卷积核是不同的,也就是后面提到的它不是权值共享)

image
image

(2)cnn的结构是怎么样子的?

下面是最经典的cnn结构,如果你关注cnn发展过程,是这样子的:LeNet5->AlexNet->VGG->Inception_v1(v2,v3)->resnet->Inception_v4->xception->resnet_v2->Inception_resnet等等,还有一些移动端的小模型(mobilenet、shuffleNet)。

image
  • 1. 学过数字图像处理的应该学过卷积,像sobel算子等一些边缘检测,像一些均值滤波、中值滤波等等,只是这个卷积核我们称为fliters;但是和卷积神经网络中是不一样的,cnn中的卷积核往往是很多个,并且卷积中的卷积核值是通过学习得到的。卷积的流程:以一个很简单的图示展示卷积的流程:(下面只是一个简单的演示,真实情况下一般都是m个输入n个输出,对应[m,n,kernel_size,kernel_size])
image
  • 2. 池化流程,在一个给定的区域内,譬如22的区域取最大值(最大池化)、平均值(平均池化),(还有随机池化等)然后设置步长一般为2(就是下一步33的区域走到哪里),这样遍历完后,图像大小则会变为原来的二分之一。下面是最大池化和平均池化。
image

(3)cnn中各层的含义是什么?

卷积层的作用:

  • 1. 权值共享,减少训练参数;一个卷积核与 输入map的不同区域做卷积时,它的参数是固定不变的。在CNN里,这叫做权值更享,那么为什么说减少训练参数呢? 没有对比不能说少了或者多了,在上面的为什么提出cnn中已经解释了。

  • 2. 不同的卷积核可以提取不同的特征;

池化层的作用:

减少参数。通过对卷积后的特征图降维,有效减少后续层需要的参数,但是下面的才是内涵所在:

  • 1. 使构建更深层次的网络变得可行;

  • 2. 使得filters获得更多的全局和contextual(上下文)信息;

  • 3. 使训练可行,也可以说使得训练变得更高效,主要是针对深层次的网络结构来说;

  • 4. 使得 特征map大小和数量进行更好的选择(权衡)。例如,就用输入到全连接层的前一层conv来说,特征map太大的话,特征数量就不易太多,通过pooling,使得特征map变小,特征map数量就可以更多。

    (那么为什么要特征map更多呢?好处在哪里?)

  • 答:因为每个特征map对应一个filters,特征map越多对应更多的filters,而不同的filters提取的是图像中不同方面的特征,也就是说filters越多对图像不同特征的提取越多。

    1. 还有局部旋转不变性哦,其中像素在邻域发生微小位移时,池化层的输出是不变的。这就使网络的鲁棒性增强了,有一定抗扰动的作用。

最后层:全连结层(FC)

这个简单提一下,水太深;

    1. FC在整个卷积神经网络中起到“分类器”的作用;
    1. 目前由于全连接层参数冗余(仅全连接层参数就可占整个网络参数80%左右),像ResNet和GoogLeNet等均用全局平均池化(GAP)取代FC来融合学到的深度特征,最后用softmax等损失函数作为网络目标函数训练模型。
  • 3. FC越来越不被看好。

说明:我只是根据自己的理解写了下来,我又不是大牛、大神,只是一个小罗罗,希望大家能给给予批评指正,另外挖的坑太多,欢迎投稿,救救我。

展望:

接下来请关注手撕cnn;

接下来请关注cnn实现;

接下来请关注:但之后dl将告一段落,补习传统机器学习的理论知识 到 实践;

后面再开始进入dl:搭建通用分类模型框架(vgg,resnet,inception等);人脸检测系列;人脸识别系列;验证码识别系列;通用OCR系列;年龄性别识别;rnn预测;强化学习;一起走进无人驾驶;之间还会插入数据结构和算法;

目前自己在瓶颈期,真的掉坑里了,整理总结前行,一直在路上。

machinelp与你一年之约,你准备好了吗?

推荐阅读:

  1. 机器学习-1:MachineLN之三要素

  2. 机器学习-2:MachineLN之模型评估

  3. 机器学习-3:MachineLN之dl

  4. 机器学习-4:DeepLN之CNN解析

  5. 机器学习-5:DeepLN之CNN权重更新(笔记)

  6. 机器学习-6:DeepLN之CNN源码

  7. 机器学习-7:MachineLN之激活函数

  8. 机器学习-8:DeepLN之BN

  9. 机器学习-9:MachineLN之数据归一化

  10. 机器学习-10:MachineLN之样本不均衡

  11. 机器学习-11:MachineLN之过拟合

  12. 机器学习-12:MachineLN之优化算法

  13. 机器学习-13:MachineLN之kNN

  14. 机器学习-14:MachineLN之kNN源码

  15. 机器学习-15:MachineLN之感知机

  16. 机器学习-16:MachineLN之感知机源码

  17. 机器学习-17:MachineLN之逻辑回归

  18. 机器学习-18:MachineLN之逻辑回归源码

版权声明:本文为博主原创文章,未经博主允许不得转载。有问题可以加微信:lp9628(注明CSDN)。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 159,117评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,328评论 1 293
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,839评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 44,007评论 0 206
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,384评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,629评论 1 219
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,880评论 2 313
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,593评论 0 198
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,313评论 1 243
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,575评论 2 246
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,066评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,392评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,052评论 3 236
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,082评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,844评论 0 195
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,662评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,575评论 2 270

推荐阅读更多精彩内容