斯坦福CS231n assignment1:softmax损失函数求导

分类

在前文斯坦福CS231n assignment1:SVM图像分类原理及实现中我们讲解了利用SVM模型进行图像分类的方法,本文我们讲解图像分类的另一种实现,利用softmax进行图像分类。

softmax和svm模型网络结构很相似,区别在于softmax会对svm的输出分量进行归一化处理,使得每一个输出分量变成一个概率值,所有输出分量的概率之和为1。


归一化概率

同时损失函数也发生了变化,svm的损失函数折叶损失(hinge loss)是针对样本的标记类别之外的其他类别进行损失计算的,也就是说标记类别不计入损失,其他类别计算损失并累加作为某个样本的损失。而softmax的损失函数交叉熵损失(cross-entropy loss)只跟某个样本的标记类别相关,根据该标记类别的概率计算损失值,而不考虑标记类别之外的其他类别。


svm和softmax损失函数的计算比较

svm得出的每个输出节点的得分,比如[98, 33, 15]是无标定的,也就是只是一个相对的大小,难以进行直观的解释。而softmax可以解释为实例被划分为某个类别的可能性,或者概率。

下面是softmax的损失函数:

softmax损失函数

也可以等价成:


softmax损失函数等价写法

加入正则化损失项后,批处理过程中N个样本的平均损失变成:


加入正则项的损失函数

这里我们使用L2正则化损失:


L2正则化损失项

在此基础上我们来推导损失函数L对权重Wij的偏导数,推导过程如下:


softmax交叉熵梯度计算

在这个推导过程中需要注意的是,直接跟标记类对应的输出节点相连的权重和不跟标记类节点相连的权重的偏导数格式是不一样的,对应于推导过程中的if/else判别。

对应的代码如下:

def softmax_loss_naive(W, X, y, reg):
  """
  :param X: 200 X 3073
  :param Y: 200
  :param W: 3073 X 10
  :return: reg: 正则化损失系数(无法通过拍脑袋设定,需要多试几个值,然后找个最优的)
  """
  dW = np.zeros(W.shape) # initialize the gradient as zero

  # compute the loss and the gradient
  num_classes = W.shape[1]
  num_train = X.shape[0]
  loss = 0.0
  for k in xrange(num_train):
    origin_scors = X[k].dot(W)
    probabilities = np.zeros(origin_scors.shape)
    logc = -np.max(origin_scors)
    total_sum = np.sum(np.exp(origin_scors - logc))

    for i in xrange(num_classes):
        probabilities[i] = np.exp(origin_scors[i] - logc) / total_sum

    for i in xrange(num_classes):
        if i == y[k]:
            dW[:, i] += - X[k] * (1 - probabilities[i])  # dW[:, i]:3073X1  X[k]: 3073 X 1
        else:
            dW[:, i] += X[k] * probabilities[i]

    loss += -np.log(probabilities[y[k]])

  # Right now the loss is a sum over all training examples, but we want it
  # to be an average instead so we divide by num_train.
  loss /= num_train
  dW /= num_train
  dW += reg*W # regularize the weights
  # Add regularization to the loss.
  loss += 0.5 * reg * np.sum(W * W)

  return loss, dW
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 157,012评论 4 359
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 66,589评论 1 290
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 106,819评论 0 237
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,652评论 0 202
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 51,954评论 3 285
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,381评论 1 210
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,687评论 2 310
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,404评论 0 194
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,082评论 1 238
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,355评论 2 241
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 31,880评论 1 255
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,249评论 2 250
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 32,864评论 3 232
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,007评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,760评论 0 192
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,394评论 2 269
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,281评论 2 259