3D图形:矩阵与线性变换

前言


由于OpenGLES的进度再度搁浅,所以准备从再次学习3D图形的深层次的知识,这一篇主要讲的是如何使用矩阵表示旋转、缩放、投影、镜像、切变,这些线性变换将会由浅入深,也算是为了后面的仿射变换做铺垫吧!接下来,我们一一看这些线性变换.

旋转


日常开发过程中旋转是一种很常见的图形变换,现在我们就对2D环境下和3D环境下的图像变换进行讲解说明.

2D环境下的旋转

假设现在物体现在就在原点位置,例如下图.


然后物体旋转角度为θ = 3/π,在旋转当中经常被认为逆时针为正方向,顺时针为负方向,那么对于基向量p,q是怎么变化的呢?如下图所示.这里我直接用绘图工具了,图片粗糙请见谅.

我们从图片中可以看到旋转后的新向量p1,q1的值(当然了,实际上是根据三角函数计计算出来的),然后通过这两个值我们就可以构造出如下通用旋转矩阵.通过下面的矩阵,我们是不是很熟悉呢?有没有仿射变换的赶脚.不要着急,我们慢慢看.

</b>

3D环境下的旋转

在3D的环境下,我们讨论的不再是绕点旋转,而是绕轴旋转.虽然是绕轴旋转,我们也要定义出正负方向来.在左右坐标系中的情况是有所不同的,什么?不知道左右坐标系如何定义的?那么看下图所示.



那么在我们的坐标系中如何判断出正负方向呢?比如我们在左手坐标系中需要使用的左手法则俩判断正负方向,而在右手坐标系中则正好相反.我们就拿在左手左边系为例,法则示意图如下所示.(左右手法则不过多解释,如果不懂请自行查看高中物理相关知识)

|左手坐标系|
|:---:|:---:|:--:|
|从哪里看|正方向|负方向|
|从轴的负端点向正端点看|逆时针|顺时针|
|从轴的正端点向负端点看|顺时针|逆时针|

上面我们了解完旋转方向了,接下来我们先看看三种特殊情况,分别绕x,y,z轴进行旋转.

我们还是来看基向量的变化,首先对于3D中的基向量p ,q ,r由于是绕x轴进行旋转的,所以说基向量p是没有任何变化的,变化的只有q ,r两个基向量,假设旋转的角度θ = 3/π,那么如下图所示.

然后如果在2D中通过三角函数公式,我们可以获得以下的旋转变换矩阵.

那么绕y,z轴与之类似,我就不做图了,直接上公式了.

绕y轴旋转

绕z轴旋转

那么上面看完了三种特殊的旋转方式,接下来,我们就看一下在3D中绕任意轴旋转的情况.

如图所示,如果向量v(粉色)绕轴向量n旋转得到向量v'(粉色),我们直接如果直接观察的话是非常困难的.


但是如果我们把向量v和向量v'进行分解,然后把旋转的θ放在一个平面中来解决问题,这样,我们的旋转问题就转化为简单的2D问题了.如下图所示.

这里我要对各个向量做一下解释说明,
其中nv在旋转轴上的投影 (假设旋转轴为n',那么n=n'(v·n'));
v为旋转之前的向量;
v'为旋转之后的向量 ;
pv垂直于n的分量(p'同理);
ω为同时垂直于np的向量,长度与p相等.

上面基本我们把所有的向量解释了,现在已经知道的条件是向量v和旋转轴n'以及旋转角度θ要计算的是向量v'.(怎么跟计算题似的😂)

整体的思路是这样的,我们可以使用向量n和向量p'表示向量v',v' = n +p';然后n=n'(v·n')以及p'=ωsinθ+ncosθ,这三个向量表示公式来进行表示分解.计算过程如下.(说明:由于时间原因,本人就直接用纸写了计算过程了.骚栋的字是夏练三伏 冬练三九,终究还是败了)

首先我们先对p'=ωsinθ+pcosθ进行解析,步骤如下

p'=ωsinθ+pcosθ
代换pω
p = v - n = v - ( v·n')n'
ω = n' x p = n' x (v - n) = n' x v - n' x n = n' x v - 0 = n' x v
**p'=ωsinθ+pcosθ = (n' x v)sinθ +(v - ( v·n')n')cosθ **

演算草稿

上面我们已经计算出p'然后带入v' = n +p',计算如下所示

v' = (n' x v)sinθ +(v - ( v·n')n')cosθ +n'(v·n')

现在我们既然有了转换关系,那么我们就要对三个基向量p ,q ,r进项转换了,我们就拿其中p = [1,0,0]来举例说明.其中旋转轴向量n' = [nx ,ny,nz],那么经过旋转之后的基向量p'是什么情况呢?步骤如下所示.

同样的对于基向量q = [0,1,0] ,r = [0,0,1],我们使用公式v' = (n' x v)sinθ +(v - ( v·n')n')cosθ +n'(v·n')一样求出他们转换之后的基向量.具体的过程我就不在重复了,如果向量计算记不清楚的可以查看3D图形:向量的相关计算,计算结果如下.

变换之后的基向量q'
变换之后的基向量r'

结果上面的重重计算,我们终于得到了绕任意轴n = [nx ,ny,nz],的旋转矩阵.
如下图所示.


缩放


相比于旋转而言,缩放比较简单,(缩放的定义我就不过度的解释了),我们就从2D的环境和3D环境以及沿着任意方向缩放三个方面来看缩放这个知识点.

2D的环境和3D环境沿着坐标轴缩放

如果沿着坐标轴进行缩放,那么每一个坐标轴都有缩放因子,所以2D环境下有两个缩放因子Kx和Ky,那么基向量p和q根据缩放因子的影响,我们可以得到下面结论.

然后根据变换,我们就可以得到在2D环境下的缩放矩阵.如下所示.

那么,通过2D环境下的缩放矩阵,我们可以得到3D环境下的缩放矩阵.


沿着任意方向缩放
上面我们把在2D的环境和3D环境的缩放情况说明了一下,接下来我们看一下沿着任意方向缩放的情况,如图所示.(假设在向量n方向上的缩放因子为k)

在图中n为缩放方向,v为缩放之前的向量,v'为缩放之后的向量,aa'分别为v和v'垂直于缩放方向的分量,bb'分别为v和v'在缩放方向上的投影.

思路是这样的,
首先v只是在n的方向上进行了缩放,所以缩放前后a是没有任何改变的,也就是说,a = a';
bb'分别为v和v'在缩放方向上的投影,所以会有b = (v·n)nb' = (v'·n)n;
然后,再就是通过向量的加减法,我们可以得知,v = a +bv' = a' +b';

上面是三个具体的条件,我们根据条件用n,v,k来表示v'.具体的计算过程如下.

b' = kb = k(v·n)n
a' = a = v - b = v - (v·n)n
v' = a' + b' = v - (v·n)n + k(v·n)n = v +(k-1)(v·n)n

上面我们已经得到了v' 的表达式,然后我们就需要对各个基向量进行计算了,这里使用的是基向量p = [1,0],具体的计算过程如下所示.

同理,基向量 q与之类似,结果如下所示.

那么,在2D中的缩放矩阵如下所示.

3D因为原理一样就不在推导了,在3D中的缩放矩阵结果如下所示.


正交投影


一般来说呢,投影就意味着降维操作.这篇博客主要研究的是正交投影.透视投影将在后面的博客中体现,但是我还是要那两张图片给来说明一下正交投影和透视投影的不同.简单点说正交投影原来的点和投影点的直线相互平行,但是透视投影所有的投影线会相交于一点.如下所示.

正交投影
透视投影

接下来我们就直接看看2D和3D环境下的正交投影矩阵.

</b>
当然了我们也是可以向任意直线或者平面投影,直线或者平面必须通过原点的.然后我们利用缩放的结果,有如下的结果.


镜像


镜像是一种变换,其作用就是按照直线或者平面"翻折".如图所示.

镜像和投影都是可以通过缩放矩阵进行变换的,我们只需要把缩放矩阵的缩放因子设置为-1即可,那么在2D和3D情况下的沿着任意轴的镜像矩阵如下所示.


切变


切变是一种坐标系"扭曲"变换,非均匀的拉伸它,切变的时候角度会发生改变,但是面积(2D)或者是体积(3D)不会发生改变.

具体的解释意义如下所示.

那么在3D环境下的是切变的形式又是如何的呢?如下所示.

当然了,其实切变并不常用.😄


结束语


经过两三天的写作,整理学习,总算是写完了旋转、缩放、投影、镜像、切变的线性变换,学习3D图形更多的是需要一个本子和一支笔,只有不断的演算才能真正的掌握这些.如果你喜欢骚栋,请继续关注,下一篇我将对矩阵的其他知识以及齐次矩阵的相关知识做研究整理.

最后还是要附上<<3D数学基础 图形与游戏开发>>的pdf版的传送门来结束线性变换的相关知识.

--> <<3D数学基础 图形与游戏开发>>传送门🚪
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 158,736评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,167评论 1 291
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,442评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,902评论 0 204
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,302评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,573评论 1 216
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,847评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,562评论 0 197
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,260评论 1 241
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,531评论 2 245
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,021评论 1 258
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,367评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,016评论 3 235
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,068评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,827评论 0 194
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,610评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,514评论 2 269

推荐阅读更多精彩内容