经典算法系列之(一) - BitMap

一、问题引入

     BitMap从字面的意思,很多人认为是位图,其实准确的来说,翻译成基于位的映射,怎么理解呢?

举一个例子,有一个无序有界int数组{1,2,5,7},初步估计占用内存44=16字节,这倒是没什么奇怪的,但是假如有10亿个这样的数呢,10亿4/(102410241024)=3.72G左右。如果这样的一个大的数据做查找和排序,那估计内存也崩溃了,有人说,这些数据可以不用一次性加载,那就是要存盘了,存盘必然消耗IO。我们提倡的是高性能,这个方案直接不考虑。

二、问题分析

  如果用BitMap思想来解决的话,就好很多,那么BitMap是怎么解决的啊,如下:

一个byte是占8个bit,如果每一个bit的值就是有或者没有,也就是二进制的0或者1,如果用bit的位置代表数组值有还是没有,那么0代表该数值没有出现过,1代表该数组值出现过。不也能描述数据了吗?具体如下图:


271753541061756.png

是不是很神奇,那么现在假如10亿的数据所需的空间就是3.72G/32了吧,一个占用32bit的数据现在只占用了1bit,节省了不少的空间,排序就更不用说了,一切显得那么顺利。这样的数据之间没有关联性,要是读取的,你可以用多线程的方式去读取。时间复杂度方面也是O(Max/n),其中Max为byte[]数组的大小,n为线程大小。

三、应用与代码

 如果BitMap仅仅是这个特点,我觉得还不是它的优雅的地方,接下来继续欣赏它的魅力所在。下面的计算思想其实就是针对bit的逻辑运算得到,类似这种逻辑运算的应用场景可以用于权限计算之中。

再看代码之前,我们先搞清楚一个问题,一个数怎么快速定位它的索引号,也就是说搞清楚byte[index]的index是多少,position是哪一位。举个例子吧,例如add(14)。14已经超出byte[0]的映射范围,在byte[1]范围之类。那么怎么快速定位它的索引呢。如果找到它的索引号,又怎么定位它的位置呢。Index(N)代表N的索引号,Position(N)代表N的所在的位置号。

Index(N) = N/8 = N >> 3;

Position(N) = N%8 = N & 0x07;

(1) add(int num)

你要向bitmap里add数据该怎么办呢,不用担心,很简单,也很神奇。

上面已经分析了,add的目的是为了将所在的位置从0变成1.其他位置不变.


281640593249022.png

实例代码:

public void add(int num){
        // num/8得到byte[]的index
        int arrayIndex = num >> 3; 
        
        // num%8得到在byte[index]的位置
        int position = num & 0x07; 
        
        //将1左移position后,那个位置自然就是1,然后和以前的数据做|,这样,那个位置就替换成1了。
        bits[arrayIndex] |= 1 << position; 
    }

(2) clear(int num)

  对1进行左移,然后取反,最后与byte[index]作与操作。


281643249184242.png

实例代码:

public void clear(int num){
        // num/8得到byte[]的index
        int arrayIndex = num >> 3; 
        
        // num%8得到在byte[index]的位置
        int position = num & 0x07; 
        
        //将1左移position后,那个位置自然就是1,然后对取反,再与当前值做&,即可清除当前的位置了.
        bits[arrayIndex] &= ~(1 << position); 

    }

(4) contain(int num)

281643078245899-2.png

实例代码:

 public boolean contain(int num){
        // num/8得到byte[]的index
        int arrayIndex = num >> 3; 
        
        // num%8得到在byte[index]的位置
        int position = num & 0x07; 
        
        //将1左移position后,那个位置自然就是1,然后和以前的数据做&,判断是否为0即可
        return (bits[arrayIndex] & (1 << position)) !=0; 
    }

全部代码如下:

package com.chs.alg.bitmap;

public class BitMap {
    //保存数据的
    private byte[] bits;
    
    //能够存储多少数据
    private int capacity;
    
    
    public BitMap(int capacity){
        this.capacity = capacity;
        
        //1bit能存储8个数据,那么capacity数据需要多少个bit呢,capacity/8+1,右移3位相当于除以8
        bits = new byte[(capacity >>3 )+1];
    }
    
    public void add(int num){
        // num/8得到byte[]的index
        int arrayIndex = num >> 3; 
        
        // num%8得到在byte[index]的位置
        int position = num & 0x07; 
        
        //将1左移position后,那个位置自然就是1,然后和以前的数据做|,这样,那个位置就替换成1了。
        bits[arrayIndex] |= 1 << position; 
    }
    
    public boolean contain(int num){
        // num/8得到byte[]的index
        int arrayIndex = num >> 3; 
        
        // num%8得到在byte[index]的位置
        int position = num & 0x07; 
        
        //将1左移position后,那个位置自然就是1,然后和以前的数据做&,判断是否为0即可
        return (bits[arrayIndex] & (1 << position)) !=0; 
    }
    
    public void clear(int num){
        // num/8得到byte[]的index
        int arrayIndex = num >> 3; 
        
        // num%8得到在byte[index]的位置
        int position = num & 0x07; 
        
        //将1左移position后,那个位置自然就是1,然后对取反,再与当前值做&,即可清除当前的位置了.
        bits[arrayIndex] &= ~(1 << position); 

    }
    
    public static void main(String[] args) {
        BitMap bitmap = new BitMap(100);
        bitmap.add(7);
        System.out.println("插入7成功");
        
        boolean isexsit = bitmap.contain(7);
        System.out.println("7是否存在:"+isexsit);
        
        bitmap.clear(7);
        isexsit = bitmap.contain(7);
        System.out.println("7是否存在:"+isexsit);
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 157,298评论 4 360
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 66,701评论 1 290
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 107,078评论 0 237
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,687评论 0 202
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,018评论 3 286
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,410评论 1 211
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,729评论 2 310
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,412评论 0 194
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,124评论 1 239
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,379评论 2 242
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 31,903评论 1 257
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,268评论 2 251
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 32,894评论 3 233
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,014评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,770评论 0 192
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,435评论 2 269
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,312评论 2 260

推荐阅读更多精彩内容