卷积,特征图,转置卷积和空洞卷积的计算细节

最近在做姿态估计的项目,在定制和实现卷积网络的时候发现自己对里面的一些计算细节还不够了解,所以整理了该文章,内容如下:

  • 卷积计算过程(单 / RGB 多通道)
  • 特征图大小计算公式
  • 转置卷积(反卷积)的计算过程
  • 空洞卷积的计算过程

该文章只单纯的讲解计算的细节,关于对应的原理和证明可以戳尾部的参考文献。


卷积计算过程(单 / RGB 多通道)


假设输入层的大小为 5 x 5,局部感受野(或称卷积核)的大小为 3 x 3,那么输出层一个神经元所对应的计算过程(下文简称「卷积计算过程」)如下:

卷积计算过程

上述计算对应的公式如下:

其中 I 表示输入,W 表示卷积对应的权重。

每个卷积核对应的权重 W 在计算卷积过程中,值是固定的,我们称为权重共享

然后,将值输入到激活函数 σ 中获得输出值。

如果将输入层想像成黑板,局部感受野就像是黑板擦,他会从左往右,从上至下的滑动,每次滑动 1 个步长(Stride)并且每次滑动都重复上述的计算过程,我们就可以得到输出的特征图(feature map),如下图所示:

卷积过程,蓝色表示输入,绿色表示输出

有时候,按照规定步数滑动到黑板边缘时,黑板擦一部分会露出在黑板外,这个时候就 不能够顺利执行卷积过程了,解决的方法是填充,常见的有两种填充(Padding)方法,第一种方法为 Valid,第二种方法为 Same,如下图所示:

Valid 填充方法

Valid 是丢弃的方法,比如上述的 input_width = 7,kernel_width = 5,stride = 3,只允许滑动 1 次,多余的元素则丢掉。

image.png

Same 是补全的方法,对于上述的情况,允许滑动 3 次,但是需要补 4 个元素,左边补 2 个 0,右边补 2 个 0,这种方法则不会抛弃边缘的信息,关于如何计算填充数量会在下小节中讲到。

在实际应用中,输入的都为彩色图像(RGB 三通道),也就是说输入的维度是 [图片数,图片高,图片宽,通道数],这个时候,执行卷积的过程如下:

RGB 多通道卷积过程

特征图大小的计算公式


我们在设计和调整网络结构的时候,还需要快速知道调整了卷积核后,输出特征图的大小,假定:

  • 输入图片 i(只考虑输入宽高相等)
  • 卷积核大小 f
  • 步长 s
  • 填充的像素数 p

那么输出的特征图大小 o 的计算公式则如下:

o 值的大小与 i,f,p,s 这四个变量相关,也和填充的方式有关。

  • 当填充方式为 VALID 时,p 值等于 0,代入相应的 i,f,p,s 就可以相应的计算出 o 值了。
  • 当填充方式为 SAME 时,步长 s 为 1 时,输出的 o == i,我们则可以计算出相应的 P 值为 p = (f-1) / 2

转置卷积(反卷积,逆卷积)的计算过程

在理解转置卷积(Transposed Convolution)计算过程之前,先来看一下如何用矩阵相乘的方法代替传统的卷积。

假设一个卷积操作,它的输入是 4x4,卷积核大小是 3x3,步长为 1x1,填充方式为 Valid 的情况下,输出则为 2x2,如下图所示:

我们将其从左往右,从上往下以的方式展开,

  • 输入矩阵可以展开成维数为 [16, 1] 的矩阵,记作 x
  • 输出矩阵可以展开成维数为 [4, 1] 的矩阵,记作 y
  • 卷积核可以表示为 [4, 16] 的矩阵,记作 C,其中非 0 的值表示卷积对应的第 i 行 j 列的权重。
  • 所以卷积可以用 y = C * x ([4, 1] = [4, 16] * [16, 1])来表示
矩阵 C

那么,转置卷积就可以理解为是

空洞卷积的计算过程

空洞卷积(Dilated convolutions)在卷积的时候,会在卷积核元素之间塞入空格,如下图所示:

空洞卷积过程,蓝色表示输入,绿色表示输出

这里引入了一个新的超参数 d,(d - 1) 的值则为塞入的空格数,假定原来的卷积核大小为 k,那么塞入了 (d - 1) 个空格后的卷积核大小 n 为:

进而,假定输入空洞卷积的大小为 i,步长 为 s ,空洞卷积后特征图大小 o 的计算公式为:

参考资料

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 158,847评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,208评论 1 292
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,587评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,942评论 0 205
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,332评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,587评论 1 218
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,853评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,568评论 0 198
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,273评论 1 242
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,542评论 2 246
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,033评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,373评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,031评论 3 236
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,073评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,830评论 0 195
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,628评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,537评论 2 269

推荐阅读更多精彩内容